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Summary

The olfactory system is a very efficient biological setup capable of odor information processing
with neural signals. The nature of neural signals restricts the information representation to
multidimensional temporal sequences of spikes. The information is contained in the inter-spike
intervals in each individual neural signal and in inter-spike intervals between multiple signals.
A mechanism of interactions between random excitations evoked by odorants in the olfactory
receptors of the epithelium and deterministic operation of the olfactory bulb is evaluated in
this project. Inverse Frobenius-Perron models of the bulb's temporal sequences are fitted to
the interspike distributions of temporally modulated receptor signals. Ultimately, such pattern
matching results in an ability to recognize odors, and it offers a hypothetical model for signal
processing occurring in the primary stage of the olfactory system.
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Chapter 1

Objectives

Understanding the computational principles of the biological neural circuits is a great scientific
challenge of the current century. The olfactory neural circuits are relatively well accessible
and studied, and are often believed to be the one that could provide great insights and even
a significant breakthrough in our understanding of "How the brain works".

Not only a scientific curiosity drives the interest of studying the olfactory neural circuits, but
also the potential benefits of discovering new neural computation principles. Indeed, computa-
tional abilities of the olfactory system are often superior to the ones offered by the engineering
pattern recognition techniques. Thus, better understanding of the olfactory pattern processing
could open new directions not only in neuroscience, but in computer science as well.

The aim of the research presented in this report is to study the principles of signal processing
occurring in the olfactory bulb. A new concept of the olfactory neural encoding with the inter-
spike interval (ISI) statistics has been suggested, and proposed to mimic the dynamics of the
olfactory bulb. The idea is that the stored odor pattern (ISI distribution) corresponds to one of
the eigenvectors of the transition matrix of associated Markov process.

A step towards implementation of this concept in a biologically realistic neural circuit, a circuit
of integrate-and-fire neurons, has also been made. The basic principle used in the model is that
the probabilities of occurrence of particular interspike intervals in the generated spike train are
controlled by a pattern of applied input currents. This way the model maps input patterns to the
ISI distributions. It is also suggested how such encoding with the ISI statistics could take place
in biological olfactory systems.

The idea of controlling the dynamics and statistics of a neural dynamical system with an
external input has been also studied in a theoretical model of a chaotic system, based on the
macro-dynamics of the olfactory bulb (OB). The mechanism of the input-controlled bifurcation
in a model of chaotic neuron has been proposed. This mechanism enables the neural system to
map the input space to the different modes of its own dynamics.

The mapping of input patterns to the neural output dynamics has also been studied in the
proposed model of the olfactory cortex dynamics, where the cortical pattern recognition has been
investigated. In the developed model the temporal structure of the olfactory bulb input controls
spatial dynamics of the cortical neural ensemble.
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Chapter 2

Neural Encoding in the Olfactory
Bulb

Biological olfactory system can be seen as an engineering device working as a pattern recognition
machine with associative memory. It maps specific features of the odor molecules detected by
the sensors of the receptor neurons in the olfactory epithelium to the inherent dynamics of the
olfactory subsystem called olfactory bulb (01) in mammals and antennal lobe (AL) in insects
[1, 2, 3, 4, 5, 6, 7]. The spatio-temporal patterns of this dynamics are then processed and
recognized by the olfactory cortex in mammals and mushroom body (MB) in insects [8, 9].

Variety of computational models and abstract concepts attempt to explain how olfactory sys-
tem functions. A number of them study the global neural dynamics of the olfactory bulb, in
particular, the possible role of chaos and bifurcations [10, 11, 12, 13] as well as statistics 1141
in the the olfactory information processing. More biologically oriented models explore the dy-
namics of the olfactory bulb microcircuits focusing on the coupling of neural oscillators [ 151,
emergence of synchronization [16, 17] and the mechanism of pattern formation [18, 19]. The
recognition of these spatio-temporal patterns is then studied in the models of olfactory cortex
[8, 9]. Still, more experimental and computational efforts are needed to clarify the basic infor-
mation processing principles of the olfactory system.

2.1 Olfactory epithelium

The receptor neurons of olfactory epithelium in nasal cavity transform certain properties of the
odor molecules to the spike trains which they send to olfactory bulb (Fig 2. 1). The odorant
receptors on the cilia of the sensory neurons react with the molecules having specific features. An
individual sensory neuron posses one or a few kinds of this receptors, the total number of which
Is about 1000 [20, 21]. Thus each sensory neurons is sensitive to one or a few properties of the
odor molecule, although, the origin of these molecules' properties crucial for odor identification
Is not clear [221. The sensory neurons with identical receptors are spread uniformly in the
epithelium in the 4 zones [201. The larger the concentration of the odor presented in the nasal
cavity, the more receptors are bound by the molecules, the larger the number of the sensory
neurons are excited and the larger are the frequencies of their firing. This way epithelium seem
to encode the concentration of the odor molecules with the number of activated sensory neurons
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Figure 2.1: Olfactory bulb functional anatomy. Abbreviations: M - Mitral cells; T - tufted cells;
Gr - Granulle cells; PG - Periglomerular cells; OSN - Olfactory sensory neurons;(From Mori K,
Nagao H, and Yoshihara, Y, Science, 286(5540):711-715, 1999).

and the frequency of their firing [23, 211. These spike trains from the input which olfactory bulb
receives from the olfactory epithelium.

2.2 Functional anatomy of olfactory bulb

2.2.1 Glomeruli layer

The axons (output cables) of the sensory neurons with the same receptor type converge in the
OB/AL to a tight axon bundle which is called glomerulus [20, 6, 21]. Although the glomeruli
might receive some inputs from a different receptor types [20], it is generally assumed that
each glomerulus corresponds to a specific odor feature [5]. This is the first and basic signal
transformation in the olfactory bulb: Different odors form specific spatial patterns of the excited
glomeruli, which are activated by the corresponding receptor neurons. Neighboring glomeruli
are interconnected via periglomerular interneurons (Fig. 2.1). The glomeruli excite the adjacent
periglomerular cells and get inhibitory feedback from them, which modulates the glomeruli ac-
tivity. It is suggested that this modulation could be sharpening the spatial patterns, which might
be realized via winner-take-all competition 121], as in the the visual system, although there are
arguments against it [24].

7



2.2.2 Mitral cells layer

Each glomerulus sends signals to one or a few of the specific mitral cells (MC) in OB or to the
projection neurons (PN) in AL. MC and PN are the principal (output) neurons of the OB/AL (Fig.
2.1). The dynamics of mitral cells gets modulated by the interneurons in the similar way as is
the dynamics of glomeruli: Mitral cells excite the granule cells in return get inhibited by them
1211.

Interactions in this excitatory-inhibitory circuit supposedly shape the odor-specific temporal
patterns of the mitral cells/projection neurons [25, 26]. However, the exact mechanism of
formation of the spatio-temporal patterns and their correlation with the input odor patterns is
not clear [271.

2.3 Spatio-temporal dynamics

2.3.1 Spatial patterns

The only clearly known encoding principle in the olfactory bulb is that the odor invoked spatial
activation patterns of the glomeruli and mitral cells of OB/AL are correlated with the odor com-
ponents [2, 3, 4, 5, 6]. Invoked spatial patterns also proved to be unique for different odors and
their concentrations [1, 71.

A number of experiments show that the neighboring glomeruli and corresponding mitral cells
demonstrate similar tuning properties [4, 5]. This suggests that the OB/AL might work as an
analog of a Kohonen map [28]. There is data that shows that the mapping of the olfactory bulb
may be more complicated than that: Odor receptor map in the glomeruli array seems to have
hierarchical and fractal-like structure [1]. It should be noted that the idea that spatial proximity
of the glomeruli and mitral cells corresponds to the similarity of their tuning properties is not
universally accepted [27], and it is also not clear how the tuning properties should be defined
when a neuron participates in a spatio-temporal dynamics (described in the following sections).
Overall, it is widely believed that spatial activity patterns of mitral cells and glomeruli are closely
related to the odor encoding, but the exact structure of the odor-spatial pattern correspondence
is unclear.

2.3.2 Spatio-temporal activity

Not only spatial, but also temporal patterns of activation proved to contribute to the odor en-
coding in the mammal olfactory bulb [29, 3, 7] and insect antennal lobe [30, 31, 261. As was
mentioned above, the neighboring glomeruli inhibit each other via periglomerular cells do the
same with each other via granule interneurons [211. These interactions are believed to be the
the origin of the temporal dynamics in olfactory bulb. The initial odor-invoked spatial pattern of
the mitral cells activity undergoes certain transformations as some of the mitral cells, active at
first, become inhibited, while the others, silent/suppressed at the beginning of the odor onset,
get excited later (Figs. 2.2 and 2.3).

Experimental data suggests two basic ideas about the nature of spatio-temporal dynamics.
Some of the experiments report slow dynamics of the spatio-temporal patterns in a *diffusive"
manner 1291, where the initial spatial pattern does not change significantly: only fraction of
the initially active regions stops firing, and some of the neighboring cells get recruited later
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Figure 2.2: Activation patterns in the olfactory bulb (From Spors H, and Grinvald A, Neuron,

34(2):301-15, 2002.)

(Fig. 2.2). It was shown that such transformation optimizes the odor representation [291.
The similar odors which are close to each other in the odor space would also produce similar
initial spatial representations in the mitral cells activity. During the transformation, the spatial
activity patterns of the similar odors would become more and more distinct, which, supposedly,

facilitates their recognition further in the olfactory cortex.

Another, more radical idea about the role of spatio-temporal sequences in the odor encoding
Is based on experimental data on the insect antennal lobe. In the locust AL, an initial spatial
pattern of odor invoked activity undergoes dramatic, often cyclic changes [30, 261, in contrast
to comparatively smaller changes in the olfactory bulb spatial dynamics described above. This
data clearly shows that it is not just the initial spatial pattern, but it Is the whole spatio-temporal
dynamics that encodes the odors [24, 271 (See Fig 2.3).

So, in olfactory bulb and antennal lobe an odor invokes, at first, a spatial activation pattern
of the principal (mitral or projection) neurons, which, then, transforms gradually, in a certain
spatio-temporal sequence, which is shown to be odor specific. However, what exactly the se-
quence of spatial patterns and the latencies of their appearance encodes is yet to be clarified.

Some of the hypothesis suggest that the temporal structure of these sequences may be re-

lated to the concentration of the odors [32, 19]. Indeed, it was shown that the increasing odor
concentrations reduce response latencies of the mitral cells in the odor specific sequences, and
recruited new glomerular units [7].

These and other results suggest that both odor identity and its concentrations are encoded by
both spatial and temporal structure of the activity of mitral cells. Interactions in the excitatory-
inhibitory mitral-granule and glomeruli-periglomeruli circuit shape the odor-specific temporal
patterns of the mitral cells [29, 7]. However, the exact mechanism of the spatio-temporal pattern
formation and their correlation with the input odor patterns is still unclear [27).
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Figure 2.3: Odor-specific spato-temporal dynamics of the principal neurons In the locust an-
tennal lobe. Four columns (A-D)correspond to the application of four different odors. The upper
rows show the spike train of the projection neurons (PN1, PN2 and PN3), and the lower rows
demonstrate the histograms of the spike trains, repeatedly induced by the same odor (From
Laurent G, Wehr M, and Davidowitz H, Journal of Neuroscience, 16(12):3837-47, 1996.)

2.4 Encoding with transient synchronization

In addition to spatio-temporal dynamics, another mechanism of encoding, synchronization,
proved to work in olfactory system. There have been debates for a long time about the origin and
functional significance of oscillatory activity and its synchronization in the brain in general and
in the the olfactory system in particular [271. One of the possible mechanisms of the emergence
of synchronization is believed to be based on the interaction between excitatory and inhibitory
circuits [21). When excitatory neurons (mitral cells in OB and projection neurons in AL) get
excited and start to fire (probably, incoherently at first), they activate common inhibitory cells
(periglomerular and granule cells in OB and local interneurons in AL). Inhibitory cells, in their
turn, send their feedback simultaneously to several excitatory neurons (mitral cells/projection
neurons), and this common inhibition presumably synchronizes these microcircuits [33, 21].

Experimental data on the insect olfactory system provided neuroscience with one of the clear-
est demonstrations of the role of synchronization n neural encoding [31, 26]. It was shown that
information is encoded not only by the activity of the individual neurons, but also by the fine
structure and mutual correlations of neurons, in particular, by their synchronization. In the lo-
cust antennal lobe the sequences of the transient synchronizations of specific neural ensembles
turned out to be responsible for the encoding and fine discrimination [30, 31, 261. During the
stimulus onset, specific groups of neurons synchronize their activity at specific cycles of their
activation. The timing of this synchronization and the sequence of transient synchronization
of different groups of neurons proved to be odor-specific and reproducible for a given odor for
different trials 1261.

Moreover, in the experiments with the honeybees [311 where synchronization was selectively
blocked, but the patterns of individual neurons remained unchanged, the bees still could dis-
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criminate between distinct odors, but were no longer able to distinguish similar ones. This
experimental data suggests that the transient synchronization phenomenon in a sense, adds a
new dimension to the input space. It amplifies the difference between similar odor patterns and
optimizes the stimulus representation [271.

2.5 Modeling of the olfactory bulb dynamics

Two basic approaches could be distinguished in the olfactory bulb modeling. One of them deals
with the macrodynamics of the whole olfactory bulb, assuming that it works as a dynamical
system [10, 27, 13]. The microdynamics approach, instead, studies the dynamics of the local
circuits and interactions between mitral cells, interneurons and others OB components [15, 18,
19, 34].

2.5.1 Macrodynamics

Historically, W.Freeman and co-workers [10] were the first to suggest that macrodynamics of the
olfactory bulb could be seen in terms of chaotic dynamics. Their experiments with the olfactory
bulb of a rabbit support the following concept: When there is no odor applied, the macro state
of the olfactory bulb is wandering within a chaotic attractor and this may be seen as the process
of the solution search. Applied input (odor) shifts the system to the one of its low-dimensional
attractors ("wings") that represent the recognized odor [10]. This concept inspired a number of
models of chaotic networks and chaotic neurons [15, 35, 11, 12]

Recently, the idea that one should analyze the olfactory circuit activity in terms of a dynamical
systems was developed further. Based on the experimental data on the antennal lobe dynamics
130, 26], it was proposed that the sequences of the spatial activity patterns in the locust antennal
lobe can be interpreted and modeled as the state of the system visiting low-dimensional attractors
in the specific sequence and that its trajectory is what encodes information (27, 13]. This
idea employs the concept of "winnerless competition"': the "winning" attractor of the network's
dynamics is unstable, so the global state of the system does not get stuck there forever, but, after
being in its vicinity for a while, moves on to another attractor [13]. Such dynamics has been
also simulated in a biologically realistic neural circuit [36].

It should be emphasized that this kind of dynamics is completely different from the one of
the Hopfield neural networks, where the state is just converging to the energy minimum from
the given initial condition. One of the reasons behind it is that in the biological neural circuits
input may not be presented by initial conditions as it is in ANN. The input can be assumed
rather as a set of the bifurcation parameters that control the system's dynamics [15]. Another
idea about global dynamics of the olfactory bulb was developed in [37]. The authors used
the Hopfield neural network with non-symmetric weight matrix to reproduce the experimental
spatio-temporal dynamics of the antennal lobe [26, 27].

It should be noted that despite the efforts in modeling and theory of the macrodynamics of
the olfactory bulb, it is still to be shown that the principles of dynamical systems do indeed apply
to the information processing in this system. More experimental data and biologically realistic
models are needed to clarify the issue of the encoding with global dynamics in the olfactory bulb.
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2.5.2 Dynamics of OB microcircuits

The mitral-granule cell microcircuit is believed to work as a nonlinear oscillator, which is as-

sumed to be the origin of the OB and olfactory cortex oscillations [15, 21]. One of the first
models which used coupled nonlinear oscillators to simulate olfactory bulb dynamics was pro-

posed by Li and Hopfield [341. Their model responded with specific oscillation modes to different
odors in accordance to the Freeman experimental data and concepts 1101.

The modes of dynamics of a mitral-granule pair of neurons in olfactory bulb was studied in
[15]. It was shown that the synaptic strength of lateral (mitral-to-mitral) connection may serve

as a bifurcation parameter for the mitral-granule cells oscillator. Different values of synaptic
strength produced, via variety of bifurcations, a number of different dynamics: from fixed point
and limit cycle to strange attractors and chaos.

Majority of the latest models of olfactory bulb focus on its potential role of segmentation of
odor representation Into simpler patterns 118, 19, 38]. This Idea is based on the the concept
of temporal binding and segmentation [39], which is presumably at work in the visual system.
The idea is that different components of OB activity could be segregated in time and processed
separately.

The modeling efforts have been put recently into studying the phenomenon of transient syn-

chronization in the model of the locust antennal lobe [161. It was shown that the mechanism
behind this phenomenon could be based on the interactions between inhibitory local neurons
and excitatory projection neurons, and the competition between inhibitory circuits. However, the

mechanism of the transient synchrony and its role in the neural encoding Is yet to be clarified.

2.6 Encoding with statistics of the olfactory bulb dynamics

The characteristic feature of the information processing in olfactory system is the transformation
of the static odor signature (molecular structure) into the temporal sequence of neural activities
[29, 3, 30, 31, 7, 26]. However, the principles of such transformation are unknown.

Most of the computational models reproducing temporal sequences of the olfactory bulb/an-
tennal lobe rely on the different forms of neural competition. The main idea is that different
neural ensembles win and loose the mutual competition at different times and, correspondingly,

get activated and suppressed in a specific sequence 136, 18, 19, 34, 38].
However, there is an an alternative hypothesis, which links neural encoding with the statis-

tical properties of the spike trains [40]. In this spirit, it was proposed that the odor features
(molecules) could be encoded with the probability density function of the interspike intervals
produced by the olfactory bulb dynamics [141. This way the odors are stored as the Invariant

distribution of the probabilities of the interspike intervals, which corresponds to the one of the

the eigenvectors of the transition matrix of associated Markov process. So, the odors are repre-
sented by a dynamical system which produces corresponding interspike interval distribution.

This concept may provide certain advantages. The encoding with the statistics of neural
dynamics Is Invariant in time: the information can be read out from any long enough part of the
spike train. It may be important, as the brains do not really "know" when exactly the message in
the spike train starts and ends.

The idea of encoding with statistics [141 is also supported by the nature of the biological
neuron. The neuron is a very unreliable mechanism: there is no strict correlation between
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applied stimulus and produced spike train. Thus, neural encoding should be based, at least in
part, on the probabilistic, rather than deterministic principles [401.

2.7 Discussion

There has been a significant progress in the studying of the olfactory system recently, but still,
some major advances are needed in the experimental measurements and the theoretical ap-
proaches to better understand its functioning. Experimental data provides some insights about
the role of spatio-temporal patterns of neural dynamics in the olfactory bulb [1, 2, 3, 4, 5, 6, 7],
and suggests a role of the neural synchrony in the odor encoding [30, 27, 33, 31, 26].

The first models of the olfactory bulb focused on its global dynamics, applying principles of
dynamical systems to the olfactory information processing [101. These ideas have been devel-
oped further in modeling olfactory [27, 131, and other neural circuits [11, 12]. Later, a large
body of computational work studied the formation of spatio-temporal patterns [36, 18, 19, 38]
and different modes of synchrony [ 16, 34, 17] in olfactory bulb microcircuits. Principles of recog-

* nition of these patterns in the olfactory cortex were also explored [8, 9]. Recently, a new concept
suggesting that the olfactory bulb dynamics encodes information by means of its statistics was
developed [141.

The large number of theoretical approaches and computational models related to olfactory
system points out that, probably, neither of them is capable to explain fully the olfactory sys-
tem information processing. What restricts them from being conclusive is the general lack of
our understanding of some basic principles of functioning of a single neuron, not to mention
the large networks. It is not clear what exactly a single neurons does in the brain, and what
governs its dynamics and plasticity. So, the future theoretical exploration of olfactory system
is expected to evolve in two directions: developing biologically detailed models that reproduce
experimentally measured dynamics, and the generation of new concepts about the principles of
the global olfactory system dynamics. The cooperation of these approaches should produce a
better understanding of the olfactory system dynamics.
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Chapter 3

Signal Processing with Temporal
Sequences in Olfactory Systems

Living organisms perceive odors as sensations caused by mixtures of odorant molecules. Such
molecules excite the olfactory receptors to respond with increased activity which is then passed
on to the olfactory bulb for detection. Various odorant molecules excite different groups of
receptors. A superposition of these excitations constitute the odor as detected by the olfac-
tory bulb [411. The relative concentrations of individual components constitute the odor type,
whereas the absolute concentrations determine the odor intensity. The olfactory bulb has the
task of transforming the input obtained from the receptors into a set of signals to be interpreted
by the brain.

The continuous quantities, such as molecule concentrations, cannot be directly represented
by the signals produced by biological neurons. Neurons produce spikes and only indirectly their
presence or absence, or time location may carry continuum of information. The nature of neural
signals is assumed to have the following characteristics:

1. There is no significance of the shape of individual spikes. They simply mark instances of
time when the neurons fire.

2. The signal is a time sequence of spikes. Spikes may occur more or less frequently which
has an effect on the average value of the signal.

3. Spikes may occur in a certain temporal pattern. More precisely, the inter-spike intervals
may follow a distinct and repetitive behavior. This allows for code division of information
conveyed by a single signal.

4. Two or more signals may exhibit cross-correlation which typically results from synchro-
nization between the signal sources. If the synchronized signals assume a certain spatial
distribution, a set of such signals will manifest a spatio-temporal pattern.

The neural signals of the olfactory bulb representing the information about odors and in-
tensities are further interpreted by the brain. The olfactory bulb functions as the first signal
processing stage. In all non-biological designs the first stage is responsible for the sensitivity
and noise performance of the entire detection system. The same should hold true in case of the
olfactory bulb.
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The goal of this project is to identify the simplest method of encoding odor information in
temporal sequences. The input-output interactions between temporal sequences can lead to an
odor detection and encoding mechanism in the olfactory bulb.

3.1 Temporal modulation

The very input of the olfactory system, the epithelium, produces an enormous number of signals.
Receptors are hard-wired to detect specific odor components and are uniformly distributed in the
epithelium. The odor information is therefore spatially distributed across the epithelium and is
assumed to have no temporal dependency. Every odor and concentration can be represented
by its "black-and-white photo" in which the gray-levels of pixels encode spiking activities of the
receptors. In this paper, the odor information is assumed to be spatially distributed and static,
although there is a strong evidence of various significant aspects of the inhale/exhale rhythm
and the impulse response of the olfactory bulb [42].

No temporal coding of information is performed by the individual receptors. Simply, the
more molecules are present at the docking sites of the receptors, the more frequent their spiking.
Based on response measurements and fitting of concentration-response curves presented in (231
and [431, the spiking frequency f of the receptors has an asymptotic dependency on the odorant
concentration c (molarity). When the odorant concentration is at the lowest detectable level c = ct,
the receptor fires at the very slow rate of spontaneous activity. When the concentration grows
infinitely large, the frequency reaches saturation at the maximum firing rate of fin. The curve
f(c) fits the following definition:

f = -fn arctan/3(c - ct) (3.1)

The slope factor 3 is expressed in terms of the dynamic range Ac defined as the odor concentra-
tion at which the frequency reaches 80% maximum, f(ct + Ac) = 0.8f m . Given the dynamic range,
the slope factor can be determined as 0 = tan(O.8r/2)/Ac.

Concentration c, used in [23] and [43], is a logarithmic quantity related to the odorant
molarity c = log m, with m in mol/ 1. The investigated odorants were anisole, camphor, isoamyle
acetate, and ilmonene, denoted by ANI, CAM, ISO, and LIM, respectively. The curve fitting
resulted in the following parameters for each odorant [231:

ANI CAM ISO LIM

fm 11Hz 15Hz 11Hz 8Hz
Ct -6.7 -8.6 -7.0 -7.7
Ac 1.1 1.1 0.5 0.3

Remarkably linear curves are obtained if instead of spiking frequency f, the interspike in-
tervals -r = llf are graphed versus the reciprocal of molarity, referred to as sparsity s. Since
different odorants may have largely different molarity threshold levels ct = log mt, the reciprocal
of the Incremental molarity s = 1/(m - mt) rather than the absolute value can be used in the
Joint graph for various odorants. The parametric representation of relationship (3.1) in the new
coordinates (s, r) for the introduced odorants is shown in Fig. 3.1. The horizontal and vertical
axes are the incremental sparsity s and the interspike interval r expressed in terms of molarity
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Figure 3.1: Intersplke intervals -r of receptor firing versus incremental sparsity s of odorant. Six
points on each curve correspond to the following logarithmic concentration levels (left-to-right):
1.2Ac, Ac, 0.8Ac, 0.6Ac, O.4Ac, and 0.2Ac above ct. The axes units are milliseconds (ms) and
megaliters per moll (MI/ mol).

m as follows:

s(M) ( {3.2)
2 rn -

,r(m) = (- f,, arctanf3 log ±) (3.3)

As can be seen in the figure, diluting the odorant in the air increases the interspike intervals at an
approximately constant rate. This may be regarded as temporal modulation' with the conversion
gain G = dr/ds, which is the slope of the line. The left side of each curve corresponds to the
receptor saturation region. By extrapolating the curves to the intersections with the vertical
axis, a minimum interval To for each receptor type can be found of value roughly around 100 ms.
This minimum interval may be regarded the refractory period of the receptor. With Just two
parameters 7-0 and G for each receptor type, the temporal modulation illustrated in Fig. 3.1 can
be readily described using first-order approximation:

r = ro + Gs (3.4)

The approximation can be validated only within the dynamic range of the receptor, that is outside
the saturation s > l/(mtlOAc).

3.2 Odor characterization with interspike distributions

An odor is a superposition of a number of basic odorants. The concentration information is
temporally modulated at the glomerular inputs of the olfactory bulb, therefore the perception of

'Term tempora/ modutation is adopted from [291
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odor intensity must be related to the interspike intervals. Increasing the odor intensity shortens
the intervals at different rates for each basic odorant due to the differences in their conversion
gains. This provides some explanation why responses of the mitral outputs can be different for
the same odor at different intensities [441.

In the glomerular layer the enormous number of inputs converge into much less dimensional
connections to the mitral cells. The glomeruli are also highly interconnected between each other
via periglomerular interneurons 1451. Both inhibitory and excitatory connections are present
within the glomeruli which indicates that a winner-take-all mechanism could be involved before
the input to the mitral cells. The presence of such a mechanism would enable arranging of the
input interspike intervals into distributions statistically representing the odor information.

Let R be the number of all types of receptors in the epithelium. This makes R also the
number of distinct basic odorants, the basis for the odor space. Suppose the first four, out of
all R odorants, are the ones shown in Fig. 3.1. An odor at a given intensity can be uniquely
represented by a vector s of sparsities of the basic odorants. For instance, an odor created
by mixing 0.5 mol of CAM and 0.75 moi of LIM with 100 Ml of air would be represented by vector
s = (oc, 50, cc, 75, 00,..., cc) Ml/ mol. Vector 2s would represent the same mixture diluted in twice
the amount of air. In general, an odor, as seen by the epithelium, is s = (s1, s2,..., sR). Terms
"vector" and "basis" are understood to be suitable ways to arrange numbers rather than the

strictly defined terms used in linear spaces.
A much more compressed way to describe odors is through distributions of interspike interval

probabilities. This formalism may also be more relevant to the signals presented to the mitral
inputs. Let the interspike intervals be quantized into N ranges with cutoff T-,,,. Interval Tmx

is considered to be a borderline between evoked and spontaneous activity of the receptors. A
single neural signal can represent an odor with the interspike interval 7- probability distribution

p = (pl,P2,.. PN), which is formally a vector of probabilities:

= Pr (!1rmax < 7 < r Tmax) ifn<N (3.5)

Pr (rm < r) if n = N

The quantized representation of the interspike interval distribution is chosen because it is more
suitable for numeric computations than the probability density function. A satisfactory approxi-
mation of continuum can be achieved provided that N is large enough.

Suppose the 0.5 mol of CAM and 0.75 mol of LIM mixture with 100 MI of air, indicated by the
filled squares in Fig. 3.1, is presented to the olfactory epithelium. Two kinds of receptors would
be activated, each responding with spikes separated by roughly 90 ms intervals and 175 ms inter-
vals, respectively, according to Fig. 3.1. Suppose also there is twice as many LIM receptors as
those detecting CAM. In the winner-take-all competitions, the LIM receptors would have a better
chance passing its signal compared to the CAM receptors. The described odor is represented by
the filled bars of interspike interval probabilities in Fig. 3.2. The probability of the 175 ms LIM
intervals is twice the probability of the 90 ms CAM intervals.

Suppose further that the same odor mixture is now diluted in twice the amount of air. This
doubles the sparsity of the odor, hence Increasing the interspike intervals of both odorants
present in the mixture. The diluted odors are represented in Fig. 3.2 by the empty bars of prob-
abilities. Now the LIM intervals are about 220ms and the CAM intervals increased to about lOOms
without a change to the probability levels. Note that the two odorants have different conversion
gains and modulate the temporal intervals at different rates. As the odor intensity changes, this
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Figure 3.2: Odor composed of 0.5 mol of CAM odorant and 0.75 mol of IM odorant mixed with
100 Ml of air (filled bars) and then diluted In additional 100 MI of air (empty bars). The bars have
width rma/N and represent probabilities of respective time intervals as defined by (3.5). Example
with N = 20 and rm. = 350 ms shown.

changes the probability pattern. A different hypothesis of time advance modulation where the
resulting pattern is invariant under the concentration level was Introduced in [32] and leads to
functional models [9]. However, the neurophysological evidence suggests that the patterns of
bulbar activity actually do change when varying the odor intensity [441.

The signal processing occurring between the mitral cells and glomerular layer is a dynamical
process. The information is embedded in the time realizations of signals. It may be retrieved
only through observation of these signals for a period of time. The probability distribution of the
interspike intervals may be retrieved by statistically analyzing the neural signals. Likewise, a
simple stochastic process can be modeled to have the statistical properties representing a given
odor through the probability distribution.

Suppose, in steady-state after all the transient response has vanished the odor is represented
by the probability distribution p* defined according to (3.5). A Markov process [46] with the
invariant distribution equal p* could serve as a first order approximation of a dynamical system
for that odor. Let N x N matrix P be the transition matrix of the Markov process

p(k + 1) = Pp(k) (3.6)

Also, let the process converge to p* in a sense that p* = limk-,, p(k) for almost every initial
distribution p(0). The invariant distribution is the eigenvector of transition matrix P associated
with the unit elgenvalue: p* = Pp*. In this respect, the Markov process is a dynamical system in
probabilistic space S = {p E [0; 1]N I E"p = 1} with a stable fixed point p*. Further on, space S
will be referred to as the odor space.

Consequently, an odor may be associated with an operator P: S -* S in the odor space. The
odor itself is the stable fixed point of the operator. There is a benefit of such a representation of
odors. Operator P defines an odor Indirectly through a definition of a dynamical system. It is easy
and natural to generate realizations of neural signals using such operators, which is suitable in
the modeling effort. There are many operators that have the same nvariant distribution. Hence,
the same odor information may be redundantly embedded in many different processes.

Formally, a realization of the introduced Markov process is a sequence of interspike intervals
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Figure 3.3: Unit segment potential function. In the total cost function, numbers Pi, E [0; 1]
contribute much less than numbers Pij outside this range. Minimization of w will attract all Pj's
toward the inside of the unit segment.

{,rk}. Define the interval range to be T, [iVma;rm ) ff n < N, and TN = ['rmax; oo) otherwise,
where the interval range index n is defined in the same manner as in (3.5). For the sake of
modeling, through optimization, a particular operator P may be developed to have p* as its
invariant distribution of interspike intervals over time. Denote the elements of the operator by
Pj, so that P = [Pij], where i and j are the row and column indices. Number Pij is the probability
that in the Markov process (3.6) an interval from the range T will follow the interval from the
range T:

pj Pr(Trk+l E T and rk E Tj) (37)
Pr rk G Tj)

There is no closed-form formula for selecting Pij's for a given p*. However, starting with some
random P~j's, an optimization algorithm can be used to find the Pj's as the minimum of a suitable
cost function. Since all P1j's are probabilities, they must be numbers in the unit segment from 0
to 1. This fact allows for constructing one of the components to be included in the cost function,
namely the unit segment potential. For each number Pij, a potential function v(P 2 ), shown
in Fig. 3.3 describes how distant Pij is from the unit segment:

v(Pj) --- (2Pj - 1)2

v(Pi3 ) = 1 2P- ;) (3.8)1 + (2P, j - 1) - 6 (3)

Function v attains the minimum in the middle of the unit segment and is maximally flat within
the segment. The maximally flat approximation [47] with a rational function is chosen to facil-
itate the optimization process. The partial costs v(Pi3 ) sum up to the cost function component
E,(P) responsible for keeping all the entries of P within the unit segment:

N N

EV(P) = ZZ v(PPj) (3.9)
i=1 j=1

Operator P is a probabilistic matrix in a sense that all its column vectors are normalized
probability distributions. Therefore, the column sums of P must sum up to 1. Another cost
function component E,(P) measures the deviation from this requirement:

N /N
2

Ec(P) ( 1- EPj (3.10)
j=1 = /
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Operator P is a well defined transition matrix of Markov process (3.6) if E,(P) + E,(P) = 0. The
goal of the optimization procedure is to develop operator P with the constraint that p* is it's
principal eigenvector associated with eigenvalue 1. To simplify the operator synthesis, matrix P
will be assumed to be diagonalizable: P = BAB-'. The diagonal matrix A = diag(A) is composed
of N eigenvalues A = (A1, A2, ... ,AN) of P. Let A, = 1. The convergence rate of the dynamical sys-
tem (3.6) heavily depends on the radius of the remaining A's for i > 1. Operator P is synthesized
with random As's, for i > 1, with the assumption that 1A11 < r < 1 and the radius r is kept low
to improve the convergence rate. In the numerical experiment r was selected to be equal to 0.2.
Operator P is diagonal in the basis constructed with the column vectors of B. Since A1 = 1, the
first column vector of B is p*. More precisely, Bij = p* for j = 1. All other entries Bij, for j > 1,
are variables in the optimization process. Their initial values are selected randomly from the uni-
form distribution in the range (-1; 1). Final matrix B is found using an optimization algorithm to
minimize the cost function as in the following expression:

min [E,(P)±Ec(P)] (3.11)

The minimized solution oftentimes needs a final touch to make sure that P has no negative
entries, no entries greater than one and that column sums of P are indeed 1. This can be done
by zeroing of negative values and normalization of columns. The principal eigenvector of P is
not very sensitive to such trimming of P. Software package MATRIX has been developed (See
Section 5.1) in order to generate a probabilistic matrix according to the principles described in
this section.

3.3 Embedding distributions in temporal sequences

As illustrated in the example shown in Fig. 3.2, the probabilistic representation of odors and
intensities fits well the random nature of excitations received from the olfactory epithelium. The
Markov model is also a natural candidate for a simple approximation of the dynamics behind
spike interactions driven by the receptors. The olfactory bulb, however, should be considered
a deterministic system which has no random variables other than the input received from the
epithelium. Moreover, the olfactory bulb is capable of self-excitatory activity in response to the
input. This may be the factor contributing to both high sensitivity and high selectivity of the
sense of smell [48]. From this perspective, it seems reasonable to regard the olfactory bulb as
an active medium rather than a passive relay of receptor signals. The olfactory bulb actively
produces firing activity in response to the receptor signals [49].

A sequence of interspike intervals complying with a given interval distribution can be gener-
ated in a deterministic dynamical system. The simplest such system is a one-dimensional map
constructed by solving the inverse Frobenius-Perron problem [50]. The overall goal of the search
for a sequence generator is to be able to represent the odor information by a distribution of in-
terspike intervals. A simple shift-map can be constructed directly from the probabilistic operator
used in approximation (3.6), as described in detail in [51].

First, a piece-wise linear map f: [0; N] -- [0; N], [0; N] c R is derived from probabilities included
in the operator P:

f) Wx-j+ Pmj ) +N-i, if j - P(j x <j+Pj - Pj (3.12)
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Figure 3.4: Example of a piece-wise linear shift map f (x). Function f is composed of N contin-
uous branches f3 : [j - 1; j) --* [0; NJ. If x is chosen randomly from the uniform distribution over
the range (0; N), the conditional probability 1'j that f (X) E (i - 1; i) given the fact X E (i - 1; j) Can
be evaluated by Pi, = I .7 i- 1;ifl) 1. Example with N = 3 shown.

As shown in Fig. 3.4, map f is composed of N 2 linear segments corresponding to N 2 numbers
Pip. The slopes of the segments are simply l/Pj3 . To evaluate f (x), the pair of indices i and j
appropriate for a given x needs to be identified using the condition provided by (3.12).

By scaling the domain and range of map f, the dynamical system generating temporal se-
quence {mri I can be defined with the help of shift map h:

h(r) = ~' f (IN 1 7) (3.13)

Regardless of the initial condition chosen, subsequent mappings with h will determine sequence
{m}k whose distribution of values converges to the invariant distribution of process (3.6). A
deterministic dynamical system

7Tk+l = h(-rA) (3.14)

may be regarded as a gener-ator of realizations of neural signals for a given distribution of inter-
spike intervals.

A numeric example of shift-map synthesis is shown in Fig. 3.5. Three interspike interval
distributions p , p* . and p* are selected randomly to characterize three hypothetical odors A,
B, and C. The bars represent probabilities p,, of respective time intervals as defined by (3.5).
The horizontal axis is normalized such that interval N-rm../(N - 1) corresponds to 1. Shift-maps
hA, hB, and hc are evaluated for the example odors and shown in the middle row of figures
also in time-normalized coordinates. The maps have N disconnected branches, however, vertical
lines connecting the branches are added to enhance the graphs. Starting with a random initial
interval, each map iterated 3000 times according to (3.14) produced a temporal sequence. The
sequences are shown in the bottom row of figures. Each interval in a sequence is indicated as
a point whose vertical coordinate is the normalized time. This way the density of points reflects
the original distribution plots if rotated clockwise by 900.
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Figure 3.5: Synthesis of temporal sequence generators. Three example interspike interval dis-
tributions with N = 20 representing three different odors are shown in the top row. Thbe cor-
responding shift-maps and distributions of values of generated temporal sequences are shown
underneath. The time interval axes are normalized to the range of (0; 1). Each graph in the
bottom row contains 3000 points representing interspike intervals placed vertically according to
the length of the interval.
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3.4 Frobenius filter for temporal sequences

It is broadly accepted that the olfactory bulb provides support for a pattern recognition mech-
anism for odor detection and classification. Not all of the recognition is taking place there, but
definitely the process is initiated in the olfactory bulb. Assuming that the temporal sequences of
interspike intervals are carriers for the odor information, an implementation of signal processing
system (3.14) can be proposed. Ultimately, the goal is to demonstrate usefulness of the proposed
mechanism in odor recognition.

The proposed signal processing scheme is shown in Fig. 3.6 and will be referred to as the
Frobenius filter. The input to the filter is a temporal sequence whose interspike intervals are
determined by the random variable mn with values governed by the probability distribution pin
defined as in (3.5). Distribution Pin characterizes an odor.

The Frobenius filter is simply a shift-map with the feedback loop controlled by a random
switch. The switch operation is described by a two-valued stochastic process : {0, 1} x N --+ R.
The filter is producing time intervals based on the switch position. At every interval k, the switch
position depends on the value of G governed by probabilities:

Pr(6k = 1) = c (3.15)

Pr(6k = 0) = I - c (3.16)

where c E [0; 1] is a constant parameter. When this is the case, the filter is receiving the input T-i.

The opposite position of the switch lets the shift-map determine the output time interval based
on the previous interval as in (3.14). The overall fiter equation reads:

Tk+l = h[Ckfnl + (1 - G)Tk] (3.17)

The notion of the switch is an attempt to model a competition between the input and the feed-
back. Its random operation is inherited from the random nature of the input temporal sequence.

The three shift-maps hA, hB, and hc, introduced in Fig. 3.5, are used to illustrate the function
of the Frobenius filter. Each of the shift-maps was stimulated at the input by values generated
by probability distributions p , pl, and p representing three different odors. Figure 3.7 shows
all possible input-filter combinations arranged in the following nine pairs:

(hA) (',hA) (phA)
(phB) p*,hB) phB) (3.18)

(P'A, hc) (P'l, hc) (p , hc)

In each instance, K = 20000 values random values in were drawn from the input distribution and
applied with probability c = 0.5 to the filter. The values drawn were also sorted in the ascending

Tin Shift-map X

Pr=c

Figure 3.6: Frobenius filter is a shift-map with input. Either the input interval Tin or the present
output interval rk is transformed into the next output interval Tk+1.
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Figure 3.7: Nine instances of a Frobenius filter stimulated by an input distribution for 20000
iterations. Quadratic distance di = (U, _ t,)2 between cumulative distributions of interspike
intervals at the input u, and output t, of the filter shown. The graphs are arranged according
to (3.18).

order and stored. In the sorted input sequence {ui I the following property holds: i < j =* ui < up.
When plotted, the graph of the sorted sequence would resemble the shape of the cumulative
distribution function of the random variable 7-j,

The realization of the sequence ir-k} generated by the Frobenius filter for K iterations were also
sorted in the same manner. The sorted output sequence {tj} was then compared to the sorted
input sequence in Fig. 3.7. More precisely, the graphs in the figure are the sequences of quadratic
distances { (u, - t,)2 } in each of the nine instances. The horizontal line is the mean square
value of the distance (U, - t,) 2. As seen in the figure. the input-output sequences generated in
pairs (p , hA), (pl, hB), and (ps, hc) are synchronized In a sense that the quadratic distance
between input and output interval distributions is small. The distances in all the other pairs are
significantly larger. By detecting low distance between the input and the output of the filter, an
odor recognition mechanism can be devised.

Two examples of realizations of the input and output temporal sequences are shown in Fig. 3.8
and Fig. 3.9. The proposed mechanism uses a pattern matching phenomenon which signals
successful detection as a decreased distance between parameters of the input and the output
neural signals. The pattern matching is not based on coherence of the two signals. As shown
in the figures, no similarity in realizations of the input and the output can be observed in either
the matched or unatched odor-filter pairs. In case of the matched pair, the similarity is in the
statistical properties of the input and the output signals.
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Figure 3.8: Realizations of the input (top) and output (bottom) temporal sequences for a matched
pair (p , hA). A fragment containing 100 spikes shown.
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Figure 3.9: Realizations of the input (top) and output (bottom) temporal sequences for unmatched
matched pair (pl, hA). A fragment containing 100 spikes shown.

3.5 Discussion

The details of how the cells of the olfactory bulb could encode the information in the way de-
scribed in this project are not discussed here. The goal set for this work was to describe the
simplest method of encoding information in temporal sequences and show the input-output in-
teractions which can lead to an odor detection and encoding mechanism. All the computations
are very simple. No memory is necessary, only the last time interval is locally kept in the evalua-

tion of the next time interval in the output sequence. Actual neurons are capable of performing
such a storage with their inherent leaky integration.

The shapes of the shift-maps shown in Fig. 3.5 are not crucial for in the operation of the
Frobenius filters. The proposed shapes are just samples of infinite possibilities chosen for math-

ematical simplicity. In fact, any mapping that is mixing and expanding [52] can be used in
the Frobenius filter. Such mappings develop continuous invariant distributions and guarantee
ergodicity of the temporal sequence in a sense that the invariant distribution is reachable from
any initial condition. Temporal sequences at the output of the filter have a very strong ability of
encoding information in the time scale. It is sufficient to isolate just a few consecutive spikes to
be able to identify the shift-map which generated the spikes and effectively identify the encoded

odor.
How exactly the proposed encoding concept may be implemented in a biological neural circuit

is not directly addressed here. However, it would be an intriguing subject for a possible future
research. A circuit of integrate-and-fire neurons can be designed to produce spike trains with
controlled interspike interval statistics. The software GENERATOR developed for these simula-
tions is presented later in Section 5.2.

25



4. References

[1] R. W. Friedrich and S. I. Korsching, "Combinatorial and chemotopic odorant coding in the
zebrafish olfactory bulb visualized by optical imaging," Neuron, vol. 18, pp. 737-752, 1997.

[2] J. Joerges, A. Kuttner, C. G. Galizia, and R. Menzel, "Representations of odour mixtures
visualized in the honeybee brain," Nature, vol. 387, no. 6630, pp. 285-288, 1997.

[3] J. S. Kauer, "On the scent of smell in the salamander," Nature, vol. 417, pp. 336-342, 2002.

[41 M. Meister and T. Bonhoeffer, "Tuning and topography in an odor map in the olfactory bulb,"
The Journal of Neuroscience, vol. 21, no. 4, pp. 1351-1360, 2001.

[5] K. Mori and G. M. Shepherd, "Emerging principles of molecular signal processing by mi-
tral/tufted cells in the olfactory bulb," Semin. Cell BioL, vol. 5, no. 1, pp. 65-74, 1994.

[6] K. Ressler, S. Sullivan, and L. Buck, "Information coding in the olfactory system: Evidence
for a stereotyped and highly organized epitope map in the olfactory bulb," Cell, vol. 79,
pp. 1245-1255, 1994.

[71 H. Spors and A. Grinvald, "Spatio-temporal dynamics of odor representations in the mam-
malian olfactory bulb," Neuron, vol. 34, no. 2, pp. 301-315, 2002.

[8] M. Lysetskiy, A. Lozowski, and J. M. Zurada, "Temporal-to-spatial dynamic mapping, flexi-
ble recognition, and temporal correlations in olfactory cortex model," Biological Cybernetics,
vol. 87, no. 1, pp. 58-67, 2002.

[91 M. Lysetskiy, A. Lozowski, and J. M. Zurada, "Invariant recognition of spatio-temporal pat-
terns in the olfactory system model," Neural Processing Letters, vol. 15, pp. 225-234, June
2002.

[10] W. Freeman, "Strange attractors that govern mammalian brain dynamics shown by trajecto-
ries of electroencephalographic (EEG) potential," IEEE Transactions on Circuits and Systems,
no. 35, pp. 781-783, 1988.

[11] M. Lysetskiy, J. M. Zurada, and A. G. Lozowski, "Bifurcation-based neural computation,"
in Proc. of the International Joint Conference on Neural Networks, vol. 3, (Honolulu, HI),
pp. 2716-2720, May 12-17, 2002.

[12] M. Lysetskiy and J. M. Zurada, "Bifurcating neuron: Computation and learning." Neural
Networks, 17(2): 225-232, 2004.

26



[13] M. Rabinovich, A. Volkovskii, P. Lecanda, R. Huerta, H. Abarbanel, and G. Laurent, "Dynam-
ical encoding by network of competing neuron groups: Winnerless competition," Physical
Review Letters, vol. 87, 2001.

1141 A. G. Lozowski, M. Lysetskiy, and J. M. Zurada, "Signal processing with temporal sequences
in olfactory systems." IEEE Transactions on Neural Networks, vol. 15, no. 5, pp. 1268-1275,
2004.

[151 P. Erdi, T. Grobler, G. Barna, and K. Kaski, "Dynamics of the olfactory bulb: bifurcations,
learning, and memory," Biological Cybernetics, vol. 69, no. 1, pp. 57-66, 1993.

116] M. Bazhenov, M. Stopfer, M. Rabinovich, R Huerta, H. Abarbanel, T. Sejnowski, and G. Lau-
rent, "Model of transient oscillatory synchronization in the locust antennal lobe," Neuron,
vol. 30, pp. 553-567, 2001.

[17] M. Lysetskly, A. G. Lozowski, and J. M. Zurada, "Neural encoding with transient synchro-
nization in olfactory system," in Computational Neuroscience Meeting, (Chicago, Illinois), Jul.
21-25, 2002.

118] 0. Hendin, D. Horn, and J. Hopfield, "Decomposition of a mixture of signals in a model
of the olfactory bulb," Proceedings of the National Academy of Sciences, vol. 91, no. 13,
pp. 5942-5946, 1994.

[19] 0. Hoshino, Y. Kashimori, and T. Kambara, "An olfactory recognition model based on spatio-
temporal encoding of odor quality in the olfactory bulb," Biological Cybernetics, vol. 79, no. 2,
pp. 109-120, 1998.

120] K. Mori, H. Nagao, and Y. Yoshihara, "The olfactory bulb: Coding and processing of odor
molecule information," Science, vol. 286, no. 5540, pp. 711-715, 1999.

1211 G. M. Shepherd and C. A. Greer, "Olfactory bulb," in The synaptic organization of the brain
(G. M. Shepherd, ed.), pp. 159-204, New York: Oxford University Press, 1998.

[221 P. Wise, J. Mats, and S. William, "Quantification of odor quality," Chemical Senses, vol. 25,
pp. 429-443, 2000.

[23] J. P. Rospars, P. Lansky, P. Duchamp-Viret, and A. Duchamp, "Spiking frequency versus
odorant concentration in olfactory receptor neurons," BioSystems, vol. 58, pp. 133-141,
2000.

[24] G. Laurent, "A systems perspective on early olfactory coding," Science, vol. 286, no. 5440,
pp. 723-728, 1999.

[25] G. Laurent, M. Wehr, and H. Davidowitz, "Temporal representations of odors in an olfactory
network," Journal of Neuroscience, vol. 16, no. 12, pp. 3837-3847, 1996.

[26] M. Wehr and G. Laurent, "Odour encoding by temporal sequences of firing in oscillating
assemblies," Nature, vol. 384, no. 6630, pp. 162-166, 1996.

1271 G. Laurent, M. Stopfer, R. Friedrich, M. I. Rabinovich, A. VolkovskUl, and H. Abarbanel,
"Odor encoding as an active, dynamical process: Experiments, computation and theory,"
Annual Review in Neuroscience, vol. 24, pp. 263-297, 2001.

27



[281 T. Kohonen, "The self-organizing map," Neurocomputing, vol. 21, pp. 1-6, 1998.

1291 R. W. Friedrich and G. Laurent, "Dynamic optimization of odor representations by slow
temporal patterning of mitral cell activity," Science, vol. 291, pp. 889-894, Feb. 2001.

[301 G. Laurent, "Dynamical representation of odors by oscillating and evolving neural assem-
blies," Trends in Neuroscience, vol. 19, pp. 489-496, 1996.

1311 M. Stopfer, S. Bhagavan, B. Smith, and G. Laurent, "Impaired odor discrimination on desyn-
chronization of odor-encoding neural assemblies," Nature, vol. 390, pp. 70-74, 1997.

[32] J. Hopfield, "Pattern recognition computation using action potential timing stimulus repre-
sentation," Nature, vol. 376, pp. 33-36, 1995.

[33] K. MacLeod and G. Laurent, "Distinct mechanisms for synchronization and temporal pat-
terning of odor-encoding neural assemblies," Science, vol. 274, no. 5289, pp. 976-979,
1996.

[341 A. Li and J. J. Hopfield, "Modeling the olfactory bulb and its neural oscillatory processing,"
Biological Cybernetics, vol. 61, no. 5, pp. 379-392, 1989.

[35] W. Freeman, R. Kozma, and P. Werbos, "Biocomplexity: adaptive behavior in complex
stochastic dynamical systems," Biosystems, vol. 59, pp. 109-123, 2001.

[361 M. Bazhenov, M. Stopfer, M. Rabinovich, H. Abarbanel, T. Sejnowski, and G. Laurent, "Model
of cellular and network mechanisms for odor-evoked temporal patterning in the locust an-
tennal lobe," Neuron, 2001.

1371 B. Quenet, D. Horn, G. Dreyfus, and R. Dubois, "Temporal coding in an olfactory oscillatory
model," Neurocomputing, vol. 38-40, pp. 831-836, 2001.

1381 Z. LI and J. Hertz, "Odour recognition and segmentation by coupled olfactory bulb and
cortical networks," Neurocamputing, vol. 26-27, pp. 789-794, 1999.

[39] C. Marlsburg, "The what and why of binding: The modeler's perspective," Neuron, vol. 24,
pp. 95-104, 1992.

[40] F. Rieke, D. Warland, R. R. Steveninck, and W. Bialek, Spikes. Cambridge, Massachusetts:
MIT Press, 1997.

[41] T. A. Dickinson, J. White, J. S. Kauer, and D. R. Walt, "Current trends in 'artificial-nose'
technology," Trends in Biotechnology, vol. 16, pp. 250-258, Jun 1998.

[421 J. S. Kauer, "Real-time imaging of evoked activity in local circuits of the salamander olfactory
bulb," Nature, vol. 331, pp. 166-168, Jul 1988.

[43] J. P. Rospars, P. Lansky, P. Duchamp-Viret, and A. Duchamp, "Characterizing and model-
ing concentration-response curves of olfactory receptor cells," Neurocomputing, vol. 38-40.
pp. 319-325, 2001.

1441 J. White, K. A. Hamilton, S. R Neff, and J. S. Kauer, "Emergent properties of odor infor-
mation coding in a representational model of the salamander olfactory bulb," Journal of
Neuroscience, vol. 12, pp. 1772-1780, May 1992.

28



1451 J. S. Kauer, "Contributions of topography and parallel processing to odor coding in the
vertebrate olfactory pathway," Trends in Neurosciences, vol. 14, pp. 79-85, Feb 1991.

[46] A. G. Lozowski and B. L. Noble, "Processing temporal sequences," in Proc. of the 45th Mid-
west Symposium on Circuits and Systems (MSCAS'02), vol. 1, (Tulsa, Oklahoma), pp. 180-
183, Aug. 4-7, 2002.

1471 A. Budak, Passive and active network analysis and synthesis. Waveland Press, 1991.

[48] T. A. Dickinson, J. White, J. S. Kauer, and D. R. Walt, "A chemical-detecting system based
on a cross-reactive optical sensor array," Nature, vol. 382, pp. 697-700, 22 Aug 1996.

[491 J. White, T. A. Dickinson, D. R Walt, and J. S. Kauer, "An olfactory neuronal network for
vapor recognition in an artificial nose," Biological Cybernetics, vol. 78, pp. 245-251. Apr
1998.

[501 E. M. BoUt, "Controlling chaos and the inverse frobenius-perron problem: Global stabiliza-
tion of arbitrary invariant measures," Int. Journal of Bifurcation and Chaos, vol. 10, no. 5,
pp. 1033-1050, 2000.

[51] D. Pingel, P. Schmelcher, and F. K. Diakonos, "Theory and examples of the inverse
Frobenius-Perron problem for complete chaotic maps," Chaos, vol. 9, no. 2, pp. 357-366,
2000.

[52] G. Mazzini, R. Rovatti, and G. Setti, "Chaos-based DS-CDMA:Introduction. Some tools for
studying chaos with densities." Winter School in Chaotic Communications, University of
California in San Diego, Jan. 23-26, 2000.

29



Chapter 5

Appendix

5.1 MATRIX User Manual

This software generates a transition matrix of Markov process. The optimization technique pro-
duces a corresponding operator A with a target principal eigenvector v associated with eigen-
value 1.

MATRIX Installation

1. Copy all files into an arbitrarily selected directory e.g. C: /MATLAB/MATRIX.

2. Launch MATLAB.

File list:

colwise .m

cost .m

DiagonalMatrix.m

eigv.m

formA.m

penalty.m

vector.m

Umin .m

MATRIX Tutorial

Task:

Use the MATRIX algorithm to generate matrix A with a target principal eigenvector v associated

with eigenvalue 1.

Solution:

Step 1. Choose the matrix size N:

>> N=20;
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Step 2. Define global variables:

>> global v e

Step 3. Store the target eigenvector v and the array of target eigenvalues e:

>> v=vector (N)

>> e=eigv(N)

Step 4. Define initial matrix U:

>> U=rand(N,N-I)

Step 5. Optimize initial matrix U:

>> Uopt=Umin (U)

Step 6. Generate target matrix A

>> A=formA(ve,Uopt)

Step 7. Save matrix A to the fie "matrixA".

>> save matrixA A -ASCII

MATRIX Function Reference

The following function prototypes are provided for the advanced user. These prototypes are useful

to the programmer if additional features are to be added to the software.

colwise .m

USAGE: colwise (W)

Evaluates the quadratic distance between 1 and the column sum, for each of the columns m of

the matrix A.

cost .m

USAGE: cost (u)
Matrix cost function, which defines the optimization process of the matrix A.

DiagonalMatrix.m

USAGE: DiagonalMatrix (e)
Creates a diagonal matrix with specified column of eigenvalues e on its diagonal.

eigv .m
USAGE: eigv (N)
Creates a column of eigenvalues e of dimension N, where the first one Is equal to 1 and the rest
are equal to 0.2.

formA.m
USAGE: f ormA (v, e, U)
Creates matrix A with specified eigenvectors v and corresponding eigenvalues e.
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penalty.m

USAGE: penalty (x)

Penalty function imposing constraints on the matrix A.

vector .m

USAGE: vector (N)

Creates a random normalized vector of dimension N

Uminn.m

USAGE: Umin (U)

Optimizes the initial matrix U in order to create matrix A with minimal cost function.

The code of the corresponding files can be downloaded from:

http://ci.uofl.edu/currentwork/lozowski/depscorO1/ report.final/MATRIX/

5.2 GENERATOR User Manual

GENERATOR Tutorial

This software generates a transition matrix of Markov process. The optimization technique pro-

duces a corresponding operator A with a target principal eigenvector v associated with eigen-

value 1.

GENERATOR Installation

1. Copy all files into an arbitrarily selected directory e.g. C: /MATLAB/GENERATOR.

2. Launch MATLAB.

File list:

diagr.m

filterl .m

isi .m

prob.m

GENERATOR Tutorial

Task:

Use the GENERATOR algorithm to produce a spike train with the input-controlled interspike

interval distribution.

Solution:

Step 1. Set an example input pattern: Input5=[0.41, 0.28, 0.41, 0.31, 0.341:
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>> Input5=[0.41; 0.28; 0.41; 0.31; 0.34];

Step 2. Evaluate and plot the normalized input pattern Input5norm:

>>Input5norm = Input5/sum(Input5)

ans =

0.2343

0.1600

0.2343

0.1771

0.1943

>> bar(Input5norm)

020

0.2

0,15

01

0.05

0

1 2 S 4 5

Step 3. Generate the corresponding spike train train of the length T seconds

>> T=10;

>> train=prob (T, InputS);

Step 4. Plot the diagram of the interspike interval distribution of the generated spike train:

>> bar (diagr (train, Input5))

.01

0.23

0.2-

0.15

0.1

0.05

1 2 S 4 5
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GENERATOR Function Reference

The following function prototypes are provided for the advanced user. These prototypes are useful
to the programmer if additional features are to be added to the software.

prob.m
USAGE: prob (T, Input5)
Creates a spike train of length T, controlled by the input vector Input5. In the output array the
"1" and "0" represent, respectively, the presence or absence of a spike in a 1ms interval.

isi .m

USAGE: isi (train)
Produces an array of the interspike intervals of the spike train train created by the prob.m func-
tion.

diagr.m

USAGE: diagr (train, Input)
Creates the diagram of the probabilities of occurrence of the the corresponding interspike inter-
vals in the generated spike train train controlled by the input pattern Input.

filterl .m

USAGE: filterl (u)
Realizes the winner-take-all competition: limits the number of firing neurons in the neuron array
u during one cycle to one.

The code of the corresponding files can be downloaded from:
http://c.uofl.edu/currentwork/lozowski/depscorO l/report.final/GENERATOR/
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Abstract. This paper proposes temporal-to-spatial dy- numerous experimental studies (Duchamp-Viret et al.
namic mapping inspired by neural dynamics of the 1996; Joerges et al. 1997; Ressler et al. 1994; Scarda and
olfactory cortex. In our model the temporal structure of Freeman 1987; Wehr and Laurent 1996) and theoretical
olfactory-bulb patterns is mapped to the spatial dynam- modeling (Haberly and Bower 1989; Hendin et al. 1998;
ics of the ensemble of cortical neurons. This mapping is Hoshino et al. 1998; Wilson and Bower 1992). However,
based on the following biological mechanism: while most odor recognition techniques do not make use of
anterior part of piriform cortex can be excited by the temporal encoding and processing. In static systems
afferent input alone, the posterior areas require both patterns are recognized by the stationary pattern rec-
afferent and association signals, which are temporally ognition methods, which do not appear to be linked to
correlated in a specific way. One of the functional types biological temporal dynamics. The lack of such dy-
of the neurons in our model corresponds to the cortical namics and dynamic processing principles in pattern
spatial dynamics and encodes odor components, and recognition systems is one of the reasons for their poor
another represents temporal activity of association-fiber computational abilities in comparison to biological
signals, which, we suggest, may be relevant to the neural circuits.
encoding of odor concentrations. The temporal-to- On the other hand, there are a number of olfactory
spatial mapping and distributed representation of the cortex models which are based strictly on the system's
model enable simultaneous rough cluster classification neurobiological description and produce spatiotemporal
and fine recognition of patterns within a cluster as parts dynamics similar to the experimental data (Ballain et al.
of the same dynamic process. The model is able to 1998; Wilson and Bower 1992). Although such models
extract and segment the components of complex odor do not clarify the functional significance of this dy-
patterns which are spatiotemporal sequences of neural namics, they provide insights about its possible role in
activity, cortical information processing.

Indeed, biological data demonstrate that pyramidal
cells are principal neurons of olfactory cortex that re-
ceive and integrate four major types of input signals:

I Introduction from the olfactory bulb (OB) through afferent fibers,
and also from three functional cortical areas via asso-
ciation fibers. These four signals are delayed differently

Flexible object recognition, feature binding and segmen- by different branches of fibers, and arrive to the area of
tation, attention focusing, and other pattern processing convergence at different times. Moreover, their signals
tasks are hardly handled by computational techniques need different times to propagate through the dendritesbased on stationary principles. On the other hand, they and reach the cell body. Temporal correlation of in-

are successfully resolved by biological neural systems, coming afferent and associative signals proved to be

where not only spatial, but also different kinds of crucial for the signal integration by a pyramidal cell (see

temporal dynamics and correlation are believed to be the Sct 6.1 for details) (Haberly 1998). We explore this

underlying principles of Jhe brain's abilities (Fujii et al. type of tepord als or rl i 8 We m e l o his

1996 Masbur 192). ypeof temporal correlation in our model and suggest1996; Malsburg 1992). that it could give some cues to understand how a rec-
Olfaction is an example of such a system in which ognition of multicomponent odors and their mixtures is

spatiotemporal dynamics has been the subject of both realized in the olfactory cortex.

In the ensemble of spiking neurons described in
Correspondence to: J. M. Zurada (e-mail: j.zurada@ieee.org Sect. 3, the neurons at different layers have different
Tel.: + 1-502-8526314; Fax: + 1-502-8523940) functional properties. The dynamics of the neurons
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which are sensitive to the odor components represents neurons. These neurons are sensi Live to different kinds of
the activity of the neural pool corresponding to the molecules and respond selectively to their presence with
spatial pattern of activity induced by this component oscillatory firing. An odor is further encoded into a
(Haberly 1998). Although another type of neuron, sen- quasiperiodic temporal sequence of spatial patterns of
sitive to the concentrations of the odor components, also synchronized oscillatory neural activity of the olfactory
proved to have its biological analog in the frog olfactory bulb or antennal lobe (Hoshino et al. 1998; Laurent 1996;
cortex (Duchamp-Viret et al. 1996), its function can be Scarda and Freeman 1987; Wehr and Laurent 1996).
interpreted more generally. The activity of this neuron The spatial patterns of the olfactory bulb/antennal
delivers OB signals to the cortical neurons with different lobe have been proved to be correlated with the odor
delays, so it may correspond to the dynamics of asso- components (Joerges et al. 1997; Laurent 1996; Ressler
ciation fibers. et al. 1994), but the functional significance of their

This ensemble's architecture, due to its distributed temporal structure is unclear. There are two major hy-
and dynamical representation of memory, provides the potheses of its possible role. Experiments such as these
basis for solution, of the coarseness-sensitivity flexibility of Laurent et al. (1996) and Wehr and Laurent (1996)
problem. A coarse-enough system cannot distinguish show that the temporal structure of firing of different
fine variations of the patterns within a cluster. On the ensembles contributes to encoding of odor identity in a
other hand, a sensitive-enough system is not able to certain combinatorial way. Another idea is that tempo-
detect what cluster these slightly different patterns be- ral dynamics of the olfactory bulb encodes the concen-
long to. The temporal-to-spatial mapping and distrib- trations of the odor components. According to the
uted representation of the model enable simultaneous concept that the odor components are encoded as dy-
rough cluster classification and fine recognition of pat- namic attractors of neural activity (Scarda and Freeman
terns within a cluster as parts of the same dynamic 1987), the order in which the state of the system visits
process. these attractors and the time the state spends wandering

Another group of tasks handled by biological systems around them could be correlated with the concentrations
includes feature binding, segmentation, attention focus- of the odor components (Hoshino et al. 1998). There is
ing, and other multipattern recognition problems. There also experimental and theoretical support for the idea
are experimental data that suggest that in the brain these that a component's concentrations can be encoded by
tasks are solved with temporal processing (Fujii et al. precise timing of a spike, a burst, or the phase of the
1996; links and Laing 1999), and there are models that periodic firing of corresponding neuron or ensemble
propose possible mechanisms (Ambros-Ingerson et al. (Duchamp-Viret et al. 1996; Hopfield 1995). These hy-
1990; Campbell and Wang 1998; Grossberg 1999; Hen- pothesis do not necessarily contradict each other; they
din et al. 1998; Lysetskiy et al. 2001; Malsburg 1992). In could coexist and complement one another or be the
Sect. 4 we show that the temporal structure of our model parts of a more complicated neural coding scheme.
allows us to realize this multipattern processing. Our model realizes a mapping of the temporal rela-

In Sect. 2 we introduce the biological olfactory sys- tions of input patterns into spatiotemporal dynamics of
tem and its functional properties, Sect. 3 describes the the output activity. We follow the idea proposed by
basic block layout of the model and its spatiotemporal Hopfield (1995) and assume that the precise time ad-
dynamics which ensures the recognition flexibility. An vance of a pattern's firing encodes the concentration of
example of temporal segmentation of odor patterns in a an odor, though it is a simplification of the real olfactory
mixture is presented in Sect. 4. Methods and parameters code that is yet to be discovered. However, the idea of
of the simulation are shown in Sect. 5, which is followed the temporal-to-spatial mapping could still be applicable
by discussion and conclusions in Sect. 6. if the temporal structure carried some other functional

significance.
We assume that spatiotemporal patterns in the ol-

2 Olfactory system factory bulb are formed in the following way: the greater
the concentration of the odor component applied, the

2.1 Olfactory bulb earlier the correspondent neural ensemble synchronizes
its activity and fires (Hoshino et al. 1998), and the

An odor identity is defined by a group of physical and greater is the time (p. that the jth ensemble fires in ad-
chemical parameters of the odor's constituent molecules vance of the moment of the maximum of its subthresh-
and their relative concentrations. However, these pa- old activation, which serves as a reference time (Hopfield
rameters are not clearly determined, nor is the correla- 1995).
tion between their candidates and the odor properties According to the Hopfield's (1995) hypothesis, the
(Wise et al. 2000). For the sake of simplicity we assume corresponding concentrations c, of n constituent mole-
that one constituent molecule possesses one of these cules are encoded as time advances qh, 92,.., 9. of the
crucial parameters and corresponds to one of the odor ensemble's firing:
components. The odors can therefore be presented by
the concentration vector C= {ci, c2,... , c}, where cj is j = tj - t(r) ()
the concentration of jth molecule.

In the olfactory system, odors are first perceived in the where tj is the time of the ensemble's spike and t(r) is the
olfactory epithelium by different types of receptor reference time mentioned above. The functional relation
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between stimulus intensity and time advance of the The structure of this temporal sequence of the den-
spikes has been proposed by Hopfield: dritic inward currents proved to be crucial for their in-

tegration at the cell body. In order to produce maximum
(pj = In(cj/6) (2) activity, the cell body needs not only for both afferent

where each time advance is assumed to be proportional and association signals to be applied, but also for them

to the logarithm of the corresponding concentration, a is to be temporally correlated in a specific way (Ketchum

a coefficient, and 6 is a scale factor (Hopfield 1995). and Haberly 1993a,c). This idea is also supported by the

Such logarithmic scaling makes the relative time ad- results of Wilson et al. (1992) (see Sect. 6.1). We explore

vances of spatial patterns invariant to different concen- this integration mechanism in our model and suggest

trations of the same odor. The changing of the that it could be employed by the olfactory cortex for the

concentration of a multicomponent odor results in a recognition of complex odors.

time advance of the whole pattern, while the relative Another question we focus on in this paper is: how is

time advances remain constant. the concentration of odor components encoded in the
cortex? The experimental data of Duchamp-Viret et al.
(1996) show that in a frog olfactory cortex there is a

2.2 Olfactory cortex special class of neurons which do not discriminate well
between different odors, but instead seem to encode

2.2.1 Synaptic organization. The piriform cortex (PC), odor concentration. The latency of their bursting was
the part of the olfactory cortex we focus on, is divided in found to be correlated to the odor concentration: the
three functional areas: ventral and dorsal parts of the greater the concentration, the smaller is the latency. This
anterior PC (APCv and APCd), and the posterior PC data is in accordance with the idea of Hopfield (1995),
(PPC). and suggests that odor components and odor concen-

The input (spatial activation patterns) from the OB is trations may be encoded by different populations of
delivered directly to the APCv by the lateral olfactory neurons.
tract (LOT), and via LOT collaterals further to the PPC. However, such "concentration neurons" were not
The conduction velocities along the LOT (7.0 m/s) are found in other olfactory systems, where intensity en-
greater than along its collaterals (1.6 m/s) (Wilson and coding may be different. In various olfactory systems
Bower 1992). Thus, there is a time delay of about 5-7 ms odor concentrations influence the temporal structure of
between the arrivals of the OB signal to anterior and OB activity patterns. When they are injected to the PC,
posterior parts of the PC, as measured by Ketchum and the resulting temporal patterns of incoming signals to
Haberly (1993a,b). different PC regions invoke corresponding sequences of

In addition to afferent input from the OB, pyramidal inward dendritic currents at the dendritic trees. As well
cells also receive association projections from each oth- as the integration of EPSCs in the cell body depending
er, which are distinguished by the area they come from: crucially on this pattern of inward currents (Haberly
APCv, APCd, and PPC. The striking feature of the PC is 1998; Ketchum and Haberly 1993b,c), we conclude that
the spatiotemporal organization of its afferent and as- the dynamics of association-fiber signals could be cor-
sociation connections: four major fiber systems, afferent related with the concentrations of odor components. We
input from OB, and association projections from APCv, explore these ideas in our model, where there is a special
APCd, and PPC make synapses in distinct sublayers of type of neurons sensitive to different concentrations.
the PC.

The closer the source of the signal is to the LOT,
the further from the cell body corresponding fibers 3 The model
synapse and the greater is the time of the signal's
propagation along the dendritic tree to the cell body. Let an odor be a mixture of two components A and B.
Afferent axons synapse on the dendrites of pyramidal For recognition of this mixture as a whole, some kind of
cells in layer Ia (the closest one to the cortical surface). AND logic gate ODOR= A AND B has to be realized
Association axons from the APCv and the APCd at some level of a recognition system: in our model this
synapse, respectively, in superficial (sup Ib) and deep AND function is performed by integration of afferent
(deep Tb) parts of layer 1b. Association axons from the and association signals by an integrate- and-fire neuron,
PPC excite the same dendrites deeper in layer deep Ib which fires if these signals arrive within a close-enough
and in layer III. time window.

We define an odor as a cluster of odor patterns that
2.2.2 Spatiotemporal dynamics. The temporal dynamics have identical components with different relative con-
of the dendritic trees in response to LOT activation is centrations. An odor recognition system has to be rough
also strictly structured. It includes four peaks of inward enough to be able to recognize that different patterns
currents: excitatory postsynaptic current (EPSC) in layer may belong to the same cluster. On the other hand, it
Ia (caused by the signals of afferent fibers), disynaptic has to be sensitive enough to distinguish slightly differ-
EPSC in layer sup Ib (mediated by association fibers ent odors within a cluster.
from the APCv), small EPSC in deep Ib (which is due, in In our model the recognition of an odor is repre-
part, to the APCd's signals), and inhibitory PSC in layer sented by the firing of the neurons of a specific ensemble
II. in a specific sequence. Cluster recognition and fine
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recognition are represented by activation of different and where 4 hh are the times when the value of mem-
neural subensembles. brane potential uj reaches its threshold.

Our network consists of a layer of leaky integrate- If a neuron receives a spike at time t, its potential
and-fire neurons u, interconnected via arrays of inter- uj(t) is increased by the weighted value
mediate-delay neurons dO (Fig. I). The neurons uj are
also connected with the layer of temporal inputs sj(t). w(neur) f sj(t)dt = w(neur)s

These inputs simulate activity of the OB and the neural if it is a spike from theinput level, or
layer functionally corresponds to the olfactory cortex
that receives and processes those patterns. wneur) f kl(t)dt = w(n-r) fL[d1ki(t)ldt = wC"e)S

The periodic inputs sj(t), j = 1,...,n, represent n
spatial patterns which correspond to n components of if it is a spike propagated though a delayneuron d . If
odor concentration vector C = {cI, C2,...,c}. The in- the potential of a neuron reaches its threshold value
puts are presented as follows: Uthrh, the neuron fires. Its output signal /j(t) = L[uj(t)]

produces a spike which is propagated to the array of
0delayneurons that transfer the spike to all other neurons

sj(t) = S 1 6(t +pj - kT) (3) in the layer. At the same time its potential uj is instantly
k=1 reset to 0, as shown in (5). Additionally, the potential uj

where 6(t) is Dirac delta function, T is the signal's is constantly decreasing with decay coefficient k. Thesewhee 6r) s Dracdela uncion T s te sgna's mechanisms are employed by all the neurons in the
oscillation period, s is a spike's amplitude, and the time model:

advances (Py encode concentrations of constituent mol-

ecules according to (2). An example of input pattern is duj(t) =kuyQ) + w(neur) s(t) + n in w("r) (4)
shown in Fig. 1. dt =

There are three types of neurons in the layer. Each h:i#i k=1
neuron is characterized by its state, that is the neuron's uj(t-) = Uthr.b =* ui(t+

) = 0 (5)
membrane potential: uj(t) for the principal neurons,
df(t) for the delay neurons, and k'(t) for the selective The parameters of the equation are set in such a way
neurons. The neurons and inputs are connected with that in order for a neuron uj to fire it needs to receive
weights w( -""), w(dd), and w* P) (Fig. 1). two spikes in the narrow time window At("): one spike,

As described below in (4), a neuron uj receives cor- sj(t), from the corresponding input; and another,
responding input signal s.(t) from the jth input and 1(t) = L[dk(t)], from one of the delay neurons (see
lateral signals Xkl(t) = L[dk(t)] (operator L is defined details in Sect. 5). An exception is made for the very first
below) from the activated neuron uj, which are propa- input spike in the first cycle, which alone is able to
gated and delayed by the delay neurons dk'. activate the corresponding neuron. This adds to the

The operator L used above maps the functions of a model the functional property of the networks like
neuron membrane potential to the function of the spikes the so-called LEGION, where the global inhibition of
1(t) which this neuron produces. So, for example, the neurons depends on the number of the activated
L[uj(t)] = l,(t) where lj(t) is equal to k s6(t - thrh ) ,  neurons (Campbell and Wang 1998). Such inhibition

si(tj it ( u) 1

w(SP 6)

t

s 1 (t-

Sj~$ mweu) Fig. 1. Network architecture. ,The neurons of -

W(w ur ) activated sub-ensemble (ui, d, uj} are shown in
bold. Arrows and black circles represent excit.
atory and inhibitory connections, respectively
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ensures that when fewer neurons are activated, the d4k(t) _ ( ncuL[d ,)
greater is the probability for a neuron to fire. In our dt = ( I)
model the neurons are made more sensitive to the very + WnurL
first input spike, because there is no activation yet in the [ui(t)] (8)
neuron layer. The biological correspondence of this Selective neurons provide negative feedback
assumption is discussed in Sect. 6.1. (-,q#k w(SUP)L[4 1 ()] to the delay neurons d fl) that did

Delay neurons in the arrays are integrate-and-fire not contribute to the firing of u. (6). Because of this
neurons with added inherent propagation delays Dk, selective feedback, neurons djk' which contributed to the
k =l,...,m,defined as firing of uj stay unchanged, while the rest of the delay

neurons are suppressed and will not be sensitive to theddf(t) = -kd'1(t) + w(dei)Lu,( - Dk)] spikes from u during suppression time Ts, defined asdt Arfollows:

+ w(su P) L [Xki W)] (6) 1 { w(SUp)s '
:q6k TS= In (,InthrchS" --w(de)) (9)

The parameters of the equation make the delay neuron
work as a delay operator (details in Sect. 5). When d' At the output level there is now a sequence of firing of
receives a spike at time t it fires at t + Dk. Functionally, neurons u1, di', and u1 one after another. Firing of the
d? are equivalent to the ordinary integrate-and-fire neurons ut and ut indicates that an odor of the clusterneurons as in (4), connected to the principal neuron u {ci, cj} is recognized. The firing of the specific delayvia corresponding delay D. The values of delays D neuron dKJ defines the relative concentration of twoviangcorsodigllacross the array as follows: components, the logarithm of which lays in the vicinitychange gradually aof the delay Dr of the corresponding delay neuron:
Dk=T(k - 1/2) k=lT.,m (7) - l <D T (10)m "D- -- < aln [CJJK +fm

where T is the oscillation period (3), and m is the number
of the delay neurons in the array. This specific delay An example of the system's dynamics is shown in Figs. 2
distribution ensures recognition properties of the system and 3. During the first cycle (0 < t < T), neurons are
which are discussed below, activated by ul and fire consequently in the order of their

As a pattern processing example we consider a simple inherent delays Dx, starting from the one with the
case where an odor with two components smallest DK, until d-3 gets activated, which fires within
{0,...,c 1, c,,..., 0} is applied with c1 > ci. For conve- time window At with u,. The correlated firing of uj and
nience we will be presenting this as {c,,c,}. When this di" makes -3 fire. Selective neuron 4t suppresses the
odor is applied, the neuron ut receives the input spike remaining delay neurons for the suppression time T,
sl(t) first, at the moment ti, and then u, receives s(t) at which is equal to the oscillation period T = 20. After
tZ. time T, selective neuron 4t will suppress them again. So,

The single spike s1 is enough for ul to fire because of the only delay neuron that will fire during the second
the exception mentioned above. The neuron u1 fires at and following cycles is d~j. The parameters used in the
the moment tj and sends spikes L[ut(t)] to all other simulation are described in Sect. 5.
neurons uj, j = 1, ... , n, j 0 1 via delay arrays d'. The
neurons uj receive the delayed signals from 4fk' at times
t + Dk, k = 1,... , m. However, this is not enough for
them to fire because a spike from the input level is also sT
needed. Although all of them show subthreshold acti- s1

vation, only the neuron u. which will receive the input ------- .. -............... *1..........
spike sj will actually reach the threshold and fire. Fi- di _

nally, the neurons that fire are u1 , u, and all interme- d2;I
diate neurons dkt in the array which connects them. q ................... ................. ................. .................--

The values of Dk set by (7) ensure that one and only d n
one of the delay neurons fires and sends a spike to the {
neuron u. within the time window At(x). Thus, although
all of the delay neurons in the array fired, only one of xli
them actually contributes to the firing of the neuron us. x2)1

To distinguish this contributing delay neuron from xn [
others, an additional layer of selective neurons x' is x4

n

added (Fig. 1).
Selective neurons .cj2 are functionally equivalent to the .. :.....:... : : :. t. .i

principal neurons uj. They work as coincident time de- 5 10 is 20 25 30 35 t

tectors and fire if spikes from neurons uj and dk' arrive at Fig. 2. Dynamics or the ncural ensemble during the recognition
k within time window At: process. The bars represent the spikes of the corresponding neurons
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Fig. 3a,b. Simulation or spatiotemporal dynam-
ics of the ensemble: a distribution of the neurons

x "in the layer; b spatiotemporal neural dynamics.
Axis z corresponds to the membrane potentials

X 9 + kT u(t) or d(t): k = 1,2., N, and T is the period of
the oscillations

4 Temporal segmentation Neural ensemble E,, z = , ... ,Z, is a group of neu-
rons that correspond to the components of the same

According to Hopfield's (1985) mechanism of formation odor. All neurons which are not members of the same
of the input temporal sequence, if a mixture of several ensemble are interconnected with negative weights
odors is applied, the corresponding spatiotemporal w .  When a neuron u, fires, it sends inhibitory signals
sequences are superimposed and the resulting input wintLtu(t)] to the neurons that do not belong to any of
sequence contains patterns of all components of each W

odor. The stronger the component, the earlier its pattern the ensembles E. in which the neuron u participates. Theo Te sn t membrane potentials of those neurons are decreased by
fires, no matter which odor the component belongs to. Wimet)L[ui(t)]. They stay suppressed for the refractory

In order to segregate the odor patterns in time, one of pio TL uring Thy sty supese fre reaory
the ensembles should win and hence suppress the others period TR during which they cannot fire regardless of the

for a period of several cycles. After that, due to the input signals received. TR is determined as follows:

neural fatigue, the winning ensemble stops firing and the In ) w(inte)s
second-strongest ensemble wins and fires during the next TR = kln ,Uthre h -2neur)s (12)
several cycles (Campbell and Wang 1998; Hoshino et al.
1998; Malsburg 1992). To realize such pattern segmen- The dynamics of the competition between ensembles is
tation, the modified network from Sect. 2 with addi- quite a complicated process (Campbell and Wang 1998;
tional neural interaction and neural fatigue function Hoshino et al. 1998), because for a neuron in the
F(p) is used: ensemble, its probability of being suppressed depends

on the statistical value of the difference of received
= -kuj(t) + {w(neur)Sj(t) inhibitory and excitatory spikes.

dt In our model, according to (11) and the exception for

+ w(ncur)L[dk,(t)] the first spike in the input sequence (Sect. 3), the firstEE j k=i activated neuron suppresses the others which are not inits ensemble, and does not allow them to fire with 100%
+ (inter)Lu,(t)F (1) probability. So, the ensemble which contains the win-

, uning neuron, or, in other words, the odor with the
i:Vz,uAJu1 , strongest component, always wins the competition first.

where F(p) is defined as a step function, with F(p) = I if As an example we consider the case where two odors
2kpf <p< (2k + l)pf, and F(p) = 0 if (2k+ l)pf {ci,cj} and {cp, cQ} are applied to the network with the
< p < (2k + 2 )pf; Vk : k,= 1,2,..., K. The variable p is following order of the concentrations of their compo-
the number of times the potential of neuron uj reached nents: c, > cp > cJ > cQ. The temporal sequence of input
its threshold, and pf is the number of firings after which spikes is the same, {s,(t),sp(t),sj(t),sQ(t)}, as shown in
the neuron becomes insensitive to the inputs and stays Fig. 4. The first of them, si(t), activates neuron uz, which
silent for another pf cycles, sends inhibitory signals to up and uQ, and excitatory signal
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to uj via an array of the delay neurons. When input spike u* (t) is equal to 0. If u! receives two spikes with weights
sp(t) appears, the corresponding output neuron up is w('eur) at the moments tj and t2 with t2 > tj, then
suppressed and will not respond to the impulse. Then in-
put sj activates neuron u.j, which already received an ex- if it' - I'l < At
citatory signal from u1; After that sQ(t) fails to activate then u*(tj) = utheh
neuron uQ. Finally the neurons ul and uj fire, while up and
uQ remain silent. In this way the odor {u, u., } is segmented else u (t) = 0 (14)
from the background and attention is focused on it for the If the state u (t) of logic unit u; reaches its threshhold
period of p - 2 cycles (Fig. 3). Then, due to the neural value u,*h, at time t thmh, it behaves in the same way as
fatigue F[p, the neurons ul and uj stop firing and up and neurons u, do. The value of u (t) is reset to 0 and the
uQ become activated, so the attention is now refocused on
this odor. So, the odor patterns are temporally segregated output function of the unit, Ljut)J, is equal to
and processed one at a time, as is shown in Figs. 4 and 5. A(t - tthrsh). The rules for units xk are analogous to
The parameters used in the simulation are specified in the rules of u;. The state of d' is defined as
Sect. 5. d .'(t) = d'(t) = L[u,(t)j.

The focus of the model is the computational abilities
of spatiotemporal integration and temporal dynamics
discussed in Sect. 3. For this reason, temporal parameters

5 Simulation have been assigned biologically realistic values, such as
the period of oscillations, T = 20 ms, which corresponds

The neurons described by (4) and (8) work as coincident to 50-Hz oscillations observed in the olfactory cortex.
time detectors. They fire if two spikes arrive at a neuron This also makes the values of time delays Dx, defined by
within time window At, the size of which is defined by (7), comparable with the delays of 5-7 ms, related to
the parameters of the integrate-and-fire neurons as different association fibers (see Sect. 6.1 for details).
follows: The values of the following parameters were chosen

1 /hreh arbitrarily: T=TRt=Ts=20, At=5, o=4, 6= 1,
- !In \wnrer)s 1 1, Uthresh = Xthresh =dthrmh -1, pf =2, n= 4, and
k m =4.

& = I ~xhrh (3) The weights w(dI) = 1.1 were assigned their values in
Atx) = ,wn(4nr) S  1 order to make a single weighted spike srw(d) be enough

to fire a delay neuron. The values of weights
where At(M) and At(1) are the time windows of neurons u1  w(neur) = 0.75 were defined so as to ensure that not one,
and x, respectively. In our simulation Uthreh = Xthrsh, SO but two weighted spikes sw(neur) (and in a small-enough
AIMu) = At( ), and we will represent them both as At. time window) are needed to activate a principal neuron.

Since this is essentially the property of the neurons The parameters w(S'p) = -8.0963, W ot
) = -39.91, and

used in the model, there was no need to implement them k = 0.2197 were defined by (9), (12), and (13), respec-
by the actual integrate-and-fire neurons. The neurons uj tively.
were replaced by logic units u;, characterized by its state The dynamics of an example simulation is shown in
uj*(t) that has the following properties. Without inputs, Fig. 5, where the mixture of odors {u,u 3 } = {100, 50}

iI III

up

d? QdQV
d' II
up I I

d1Q1

FP(p)0 Fig. 4. Dynamics of two neural ensembles during
..................................:;: i:::::': ::: :h u:::::: : 2 :...:. processes of temporal binding, segmentation, and

5 10 15 20 25 30 35 0 405 50 55 60 65 70 75 t attention
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,X Fig. 5a,b. Simulation of the neural dynamics of
pattern segmentation and attention focusing:
a distribution of the neurons in the layer;
b spatiotemporal neural dynamics during the first
, (left column) and second pf (right column)
cycles. Axis - corresponds to the membrane
potentials u(t) or d(t): k = I .. , pf; and T is thet 8 + 4 kT t=19 +( k~pTr period of the oscillation

and {up, uQ} = {80, 3} is applied. During the first three prevail over the association ones, and the opposite is
cycles the neurons of the first odor fire in the following true for the PPC (Haberly 1998). The results of Wilson
sequence: u1, dj", and uj (Fig. 5b, left column). This in- and Bower (1992) show that when the afferent activity is
dicates that the odor {u1 , uj} is recognized with the not strong enough, it can only activate the APC, where
relative concentrations of its components defined by (9) the AADR is low. Activation of the posterior cortex
as 0 < in'] < 1.25. After three cycles {up, d, uQ} be- (with a high AADR) results mostly from delayed arrival
comes act vated and suppresses in its turn the first en- of association-fiber activity. These results suggest that
semble (Fig. 5b, right column). .So, the ratio of the the areas with medium AADRs, such as the APCd, may
concentrations of the components of this odor is need equally both afferent and association inputs to be
2.5 < ln[Z] < 3.75. activated.

In Sect. 2.2.2 we described the spatiotemporal se-
quence of the dendritic currents, produced by afferent

6 Discussion and association signals. Its correspondence with the
dynamics of our model is the following: neuron uj re-

6.1 Biological correspondence ceives the spikes sj(t) from the OB, and L[dJ"I from the
principal neurons, differently delayed by delay neurons

We argue that the dynamics of our model reflects certain (or association fibers, as in the real PC), as shown in
aspects of olfactory cortex activity related to informa- Fig. 2. Each of the incoming signals increases the state
tion processing. The key principles of mixture recogni- of the neuron (i.e., produces a peak of inward current).
tion in our system are that a single input spike from the uj is activated only if afferent input sj(t), and one of the
OB is enough to activate a certain neuron (e.g., uj, in the association inputs L[d'], arrive in a small-enough time
model) while the others (e.g., uj) need signals both from window (in terms of the PC, the induced EPSCs are
the OB and from another principal neuron, propagated close enough in time).
by the delay neurons. This mechanism is supported by experimental results

Experimental results (Wilson and Bower 1992) indeed described in Ketchum and Haberly (1993b,c) and Ha-
suggest that while anterior areas of the cortex may be berly (1998), which show that the optimal temporal
activated by afferent input only, the posterior parts re- correlation of inward currents is the one which ensures
quire both afferent and-association signals. This mech- their roughly synchronous arrival at the cell body. In
anism rises from the properties of the relative density of these experiments, when three EPSCs were presented in
association and afferent terminals, defined by the asso- their natural sequence (with interpeak latencies of sev-
ciation-to-afferent dominance ratio (AADR). The eral milliseconds), the induced potential at the cell body
AADR increases along the distance from the LOT: in was 50% greater than the one caused by the same
the APCv (the closest area to the LOT), afferent fibers EPSCs applied simultaneously.
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Moreover, the delays produced by propagation along activates inhibitory feedback to the bulb. This feedback
the dendritic tree could synchronize the incoming sig- suppresses the part of the bulbar activity which corre-
nals, as did delay neurons in our model. Indeed, different sponds to this strongest component. During the fol-
fibers synapse at distinct distances from the cell body, lowing cycles, the normalized remainder of the input is
and thus require different times for a postsynaptic spike presented to the cortex and the same process occurs
to propagate to it via the dendritic tree. The latency repetitively. During different cycles, input is classified as
between peak depolarization in afferent input in layer la a part of a cluster of the corresponding hierarchical
and the peak depolarization of the cell body is approx- level. Processing during the first cycle corresponds to the
imately 6 ms (Haberly 1998). first level clusters (rough recognition), subcluster recog-

The repetitive temporal dynamics in our model is also nition is realized at the second cycle, and so on.
related to the one of the real PC, where the temporal Input segmentation in this. model is due to the corti-
sequence of dendritic postsynaptic currents evolves in cobulbar interaction. However, it may be also realized in
each cycle of 50-Hz cortical oscillations. Odor compo- the OB without corticobulbar interplay. In the model of
nents are also segregated temporally, with each of them Hoshino et al. (1998) the winner-takes-all competition
processed during different oscillation cycles. Thus, the occurs in the OB itself. The winning pattern suppresses
temporal sequence of EPSCs, whatever functional role it the others, stays active during several cycles, and then
plays, participates repetitively in the processing of each stops firing due to the neural fatigue. The second-
odor component. strongest pattern then wins, and the process repeats.

Selective suppression of the delay neurons in our Chaotic dynamics, which is believed to be crucial for
model, which corresponds to the suppression of associ- bulbar information processing, is also taken into ac-
ation-fiber signals, also has its prototype in the PC. As count in this system.
shown in Ketchum and Haberly (1993a), when two The models discussed above deal with odors which
successive shocks are applied to the LOT, the first one have distinct components. If, instead, complex odors
induces the full sequence of the peaks of inward cur- with the same components but in different concentra-
rents, but the second one produces only an isolated tions are ideally mixed, the information about them is
monosynaptic EPSC coming from the APCv. The as- lost, and their separation is impossible. An odor mixture
sociation-fiber signals are blocked by inhibitory postsy- {4A, 7B} may be composed of an infinite number of
naptic currents evoked by the first shock. However, odor combinations, such as {2A, B} + {2A, 6B} or {A,
there is not enough biological evidence yet to specify 3B} + {3A, 4B}. However, the problem becomes solv-
functional significance of this suppression and compare able if temporal fluctuations of the odors are indepen-
it to the one of our model, where all delay neurons are dent. This is the case when, for example, the sources of
active at the first cycle and get selectively suppressed at odors are spatially distinct and there is enough turbu-
the second one (Fig. 2). lence in the airflow. This idea was explored in the models

In our model, activity of a delay neuron represents of Hendin et al. (1994, 1998), where temporal segmen-
corresponding concentration of the odor component. tations of the bulbar activity is based on the temporal
Such behavior, although detected in the frog olfactory fluctuations of input odors.
cortex (Duchamp-Viret et al. 1996), was not observed in In our model we focus on the recognition of the odor
other olfactory systems. We argue that the dynamics of mixtures which are already segmented into spatiotem-
delay neuron in our model can be seen as differently poral patterns of OB activity, after the temporal fluc-
delayed activity of association fibers coming from dif- tuations of odors, if any, were employed by the OB. We
ferent cortical areas: APCv, APCd, and PPC. They also propose a new possible functional role of temporal
are of the same range: the time of signal propagation correlation of association-fiber signals, activity of which
along the cortex - from anterior to posterior parts - is is influenced by the temporal structure of the OB signals,
5-7 ms. which, in turn, is assumed to be correlated with the odor

concentrations.
The advantage of the distributed representation of

6.2 Olfactory system models our model is its flexible recognition ability. Speaking of
the olfactory system, where the number of odors and

The general idea behind most of the odor recognition their mixtures the brain can possibly perceive is enor-
models is that an odor pattern is temporally segregated mous, one of the computational problems is how to
in the patterns of its components, which are processed in preserve the hierarchy and similarity in the represen-
the order of their significance or intensity (the strongest tation of odor memory. In our system the neural en-
one is processed first). However, it is not absolutely clear semble which corresponds to the odor of coffee would
which parts of the olfactory system are involved in this be a part of a bigger ensemble that represents more
process, and to what degree. complicated odors of a coffee house. The dynamics of

In the model of Ambros-Ingerson et al. (1990), tem- the smaller ensemble also would be part of the bigger
poral segmentation of the bulbar activation patterns is ensemble's dynamics. On the other hand, two similar
realized by the selective inhibitory cortical feedback. odors (odors with some common components) would
During each cycle, OB activity is projected to the cortex activate two similar neural ensembles with close spatial
where the pattern of its strongest component suppress dynamics. This would happen because common com-
the other ones (the winner-takes-all mechanism) and ponents and their relative concentrations would
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Abstract. This paper presents a model of a network of integrate-and-fire neurons with time
delay weights, capable of invariant spatio-temporal pattern recognition. Spatio-temporal pat-
terns are formed by spikes according to the encoding principle that the phase shifts of the
spikes encode the input stimulus intensity which corresponds to the concentration of con-
stituent molecules of an odor. We applied the Hopfield's phase shift encoding principle at the
output level for spatio-temporal pattern recognition: Firing of an output neuron indicates that

-"" corresponding odor is recognized and phase shift of its firing encodes the concentration of the
recognized odor. The temporal structure of the model provides the base for the modeling of
higher level tasks, where temporal correlation is involved, such as feature binding and seg-
mentation, object recognition, etc.

Key words. integrate-and-fire neurons, olfactory cortex, phase shift encoding, spatio-temporal
pattern recognition'

1. Introduction

1.1. OLFACTION

In the olfactory bulb odor stimulus information is encoded into a periodic spatio-
temporal pattern of oscillatory neural activity (Hoshino et al., 1998 Skarda and
Freeman, 1987; Laurent and Davidowitz, 1994; Laurent, 1996). Specific spatial pat-
terns of synchronized firing are correlated to a certain constituent molecules of the
applied odor. Relative time advances of the appearances of these spatial patterns are
correlated with the concentrations of the molecules. This spatio-temporal correlation
enables odor recognition and concentration estimation in the olfactory cortex (Hop-
field, 1995; Hoshino et al., 1998). The olfactory epithelium of a nasal cavity contains
hundreds (say n) of receptors sensitive to various types of molecules (Ressler, 1994).
Thus, epithelium perceives odors, basically, as the mixtures of their components
(different molecules). It is convenient for the odors to be represented by the con-
centration vector C = {cL, c 2 ..... c.), where cj is the corresponding concentration of
the jth odor component.

During sniffing constituent molecules of an odor cause receptor neurons (that are
equally distributed in the olfactory epithelium) to fire, producing spikes (Duchamp-
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Viret et al., 1998; Ressler, 1994). A firing pattern in the receptor field is then mapped
to the olfactory bulb. Axons from the same receptors of olfactory epithelium go to
the corresponding ensembles of the neurons in the olfactory bulb (Ressler, 1994). So,
each ensemble of neurons in the olfactory bulb represents a corresponding consti-
tuent molecule of the odor. Once they receive impulses from the receptor level, the
neurons in the ensembles synchronize their activity. They fire synchronously within
each ensemble, and with the time shifts between different ensembles (Hoshino et al.,
1998; Laurant and Davidowitz, 1994). As a result, the odors at the bulbar level are
presented by the sequence of firing of different neural ensembles, where the specific
neural ensembles represent the odor constituent molecules and the time shifts of the
firing of these ensembles represent the concentrations of the constituent molecules
(Hoshino et al., 1998; Duchamp-Viret et al., 1996).

The larger is the concentration c, of a constituent molecule, the earlier the cor-
respondingensemble gets excited and synchronized (Campbell andWang, 1998) and
the greater is the time pj the jth ensemble fires in advance of the moment of the
maximum of its subthreshold activation, which serves as a reference time (Hopfield,
1995). So, the corresponding concentrations ci of n constituent molecules can be
encoded as time advances (PI , (P.2 . 0, of ensemble's firing presented as:

( = t - t(r) (l)

where tj is the time of the ensemble's spike and t ) is the reference time mentioned
above. The relationship (2) between input concentrations cj and corresponding time
advances (pj has been proposed in the Hopfield's model (Hopfield, 1995), where each
time advance is proportional to the logarithm of the corresponding concentration, a
is a coefficient and 6 is a scale factor.

= a ln(cj/6) (2)

The logarithmic scaling makes the relative phase pattern invariant to the different
concentrations of the same odor. In this case, not the relative, but the entire pattern is
shifted when the odor concentration is changed.

1.2. OLFACTORY PATTERN RECOGNITION MODELING

In most of the functional olfactory models reported in the literature the authors focus
on the spatio-temporal pattern formation at the olfactory bulb level. The basic
principles of pattern formation presented above are more or less understood
and they are supported by the biological experiments (Duchamp-Viret et al.,
1998; Hoshino et al., 1998; Laurent and Davidowitz, 1994; Laurent, 1996). However,
the mechanism by which these spatio-temporal patterns (Figure 1 (a)) are recognized
and then processed at the next, olfactory cortex level, remains, basically, unknown.

One of the plausible biological mechanisms of spatio-temporal pattern recognition
is a system with an appropriate set of delays stored in synaptic memory followed by
coincidence time detectors that receive these appropriately delayed (and now syn-
chronized) signals. Recognition of a stored odor can be indicated by firing of the
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corresponding coincidence time detector neuron (Hopfield, 1995; Natschlager and
Ruf, 1998; White et al., 1998). The question that arises is how the concentration of
the recognized multi-component odor is represented at the olfactory cortex?

Experimental evidence indicates that time shift encoding of stimulus intensity
occurs not only at the bulb level, but at olfactory cortex level as well (Duch-
amp-Viret et al., 1996, 1998). This supports the idea that time shift encoding is
also used at the 'output level' of the olfactory system, i.e. at the olfactory cortex.
It also indicates that the mechanism of this encoding could be similar to the one at
the olfactory bulb.

However, most of the olfactory pattern recognition models do not make use of
temporal encoding and temporal processing. In such models the patterns to be
recognized are ordinary time independent vectors that represent certain odor qua-
lities. Those vectors are then recognized by one of the classical pattern recognition
techniques, which do not have much in common with biological temporal processing.

Temporal encoding and temporal processing have only recently been included in
the olfactory pattern recognition modeling. Significant progress in this direction has
been made by White et al. (1998). In their model vapor identity is encoded by the
spatial code across output units, and vapor intensity is represented by response
latency. The system is not only biologically relevant (at some extent), but also proved
to be more effective than classical neural networks models. Its percentage of correctly
identified test patterns was higher than the one of the feed-forward neural network
with hidden layer (82% and 71% correspondingly) (White et al., 1998).

However, the model of White et al. is not complete. Odor intensities are encoded
just qualitatively: shorter response latency signifies greater concentration (and vice
versa), but no precise functional correspondence exists between response latency and

odor concentration. Moreover, the model as it is shown in (White et al., 1998) works

only in the very narrow range of relative concentrations. Our proposed model imple-
ments precise functional encoding of the pattern intensity, that is odor concentration,
with the phase shifts of the output neuron firing. The odor recognition remains
invariant within broad range of concentrations due to the Hopfield's logarithmic
intensity encoding.

2. Model

Our network consists of one layer of m leaky integrate-and-fire neurons fully con-
nected with n temporal inputs. These inputs simulate spatio-temporal patterns

formed in the olfactory bulb (Figure l(a)), and the neural layer (Figure l(b)) cor-
responds to the olfactory cortex that receives and recognizes those patterns. The
periodic inputs sj(t) for j = 1. ... , n are expressed by Dirac delta function:

sj = ft y 6(t + Oj - k) (3)
k=I

where T is the period of the signal's oscillation. The time advance pj of a periodical
input spike can be expressed in terms of its phase advance Oj related to the reference
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Figure ). Pattern formation and encoding in the olfactory system model: (a) synthetic input pattern where
s.jt) are the input signals, 0, - phase shift of the input signals, 0('4 - reference phase as in Equation (1); (b)
network of integrate and fire neurons; (c) output pattern: u, - membrane potential of the output neurons.

phase 0(') (which corresponds to the zero time advance) as: (Pj = j/w, where
w = 2x/T. In order to distinguish periodical time advances of the input spikes from
the constant time delays stored in the network, further in the paper we will call the
time advances epj as the phase shifts (pj, related to the reference phase (0). Thus, the
phase shifts (p of the signal's spikes encode concentrations of the n corresponding
constituent molecules (2). An example of input pattern is shown at Figure l(a).

During each cycle the spikes arrive to the neural layer with the delays equal to their
phase shifts (pj. Then the spikes acquire additional time delays dq stored in the
synaptic connections. So, the total time delays of the signals that arrive to ith neuron
are equal to (p, + d.

Each neuron in the layer (Figure l(b)) is characterized by its state-membrane
potential u,, (i = I.... i). Every time a neuron receives a spike, its potential
ui is increased by the weighted value of that input spike: wUsj(t - d). At the same
time the potential ui is constantly decreasing with decay coefficient k as follows:

dui(t) = kui(t) + j wj(t - dy) (4)dr 
w

1=I

When the potential of a neuron reaches its threshold value Uthr .h, neuron fires
(Figure l(c)), and its potential u is instantly reset to 0 as shown below.

UiCt-) = Uth,, =* ui(t + ) = 0 (5)

The coefficient P in (3), that is equal to Uth.h n, scales the value of input spikes. So,
only all spikes added together are able to increase the value of potential to uthmh. As
well as the membrane potential u1 is constantly decreasing (4), the spikes that arrive
with big time intervals one after another fail to significantly increase the potential's
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value. They have to arrive within a narrow time interval (almost simultaneously) to
the neuron in order to increase its value to Ilthrsh. Odor patterns are stored in the
network memory by the delays dy between inputs and the neurons. The delays are set
in such a way to make each of n spikes arrive simultaneously to the neuron if the
applied pattern is equal to the pattern stored:

dU= ( min(p,,,j (6)

where p,) is a phase vector of ith stored pattern.
When a stored odor pattern is applied, the total input E,=t vi>j(t - dj) to the

neuron i has to be equal to or more than Uth,..h in order to increase the membrane
potential ui by this value and make it fire (Figure Ic). So the weights have to be
determined as follows:

W UthrshIv >)_: sj(t - dij)(7

The neuron fires simultaneously with the last arriving spike, so the phase shift of
the output spike is equal to the minimal input phase shift (or phase shift of the
weakest component), as shown in Figure 2.

If the pattern applied is not close enough to any of stored odor patterns (of any
concentration) spikes arriving with significant time intervals will not make output
neuron fire because of its exponential decay. Output potentials in Figure 1 (c) show a
superthreshold firing of neuron #5 with the phase shift i and subthreshold activity
of all other neurons. This indicates that odor #5 with some concentration is recognized.

Due to logarithmic scaling in Equation (2) the global phase of the entire pattern is
shifted when the odor concentration is changed, while the relative phase shifts remain

I Input layer U^ Outputlayer:. (

Applied pattern
to be
recognized:

(a) t

Stored i-th
pattern:C1

(b)
Figure 2. Recognition of the patterns of the same odor with different concentrations.
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the same. This makes pattern recognition of the model invariant to the different
concentrations of the same odor. Figure 2 shows an example of two patterns of the
same odor with different concentrations. Phase shift of the entire pattern (a) is
greater than of the pattern (b), though the pattern itself is the same. Thus, the
output spike phase shift at (a) is greater than at (b). So, the odor concentration
of the pattern (a) is greater.

Concentration of entire odor cou0 , is defined as relative concentration of odor
applied to the corresponding odor stored. This concentration is decoded from
the output spike phase shift (p.., and the minimum phase shift of the corresponding
stored pattern min{fs t }) (Figure 2) by the inverse function of Hopfield's encoding.

Cout= 6 exp-- . - mi (8)
J

3. Simulation Results

In our computational simulation the stimuli are 4-dimensional (n = 4) concen-
tration vectors C (as defined above). Four input neurons produce the spatio-tem-
poral patterns that correspond to the applied stimuli. 10 output neurons (m = 10)
correspond to 10 stored odors. The concentration of their components varied from I
(threshold concentration) to 10. Concentration of the components of the odors tested
varied from I to 70.

Two basic parameters were to be optimized during the simulation: exponential
decay coefficient k (4) and corresponding weights wy (7). The system is quite sensitive
to both of them. With wj determined by Equation (7) with the equality sign, or with
decay coefficient/k >> 1, the system can recognize undistorted stored patterns only.
When weights increase or k decreases the network becomes more flexible (the recep-
tive regions of the neurons get larger). However, the greater the receptive region, the
worse the system accuracy is. So, certain compromise had to be found. For our
system the highest success rate of recognition (shown in Table I) was achieved with
k = 6.3, and w,, = 1.32, Vij. Period Tand threshold Uth,,,h were arbitrary selected as
follows: T = 50, Uthrh = i. The coefficients a and 6 define the scale of the trans-
formation (2). They were chosen as: a = 10, 6 = 1, that makes the maximum phase
difference of the spikes (that is T = 50) correspond to the relative concentration of
the odor components equal to 150.

Example of a simulated input pattern is shown at Figure 3(a). This signal is a
repeating sequence of four spikes corresponding to applied odor {63, 96,48, 10)

Table L Characteristics of the model performance

Patterns applied 5000
Odors recognized 10.3%
Successful recognition 81%
Incorrect recognition 19%
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Figure 3. Simulated input and oulput patterns: (a) input pattern or an example odor (63, 96, 48, 10); (b)
Output patterns of the ist, and 5th neurons (both are shown on the same picture). There is a super-
threshold firing or the neuron #5, and substhreshold activity of neuron #1. Odor #5 is recognized.

which was chosen for illustration purpose. Figure 3(a) shows the activity patterns of
two neurons. Only neuron #5 reaches the threshold and fires. This indicates suc-
cessful recognition of odor #5. Neuron #1 does not reach the firing level, so the odor
#1 is not recognized.

In our experiment 5000 randomly generated test odors have been presented to the
system. A total of 89.7% of them caused the output neurons to produce the sub-
threshold activity only (odors were not recognized). A total of 10.3% of the test-
stimuli provoked superthreshold firing of output neurons (odors were recognized). A
total of 81.0% of them were recognized correctly (both odor and concentration),
with allowed concentration error equal to 20%.

For the sake of testing the proposed model, each applied odor is projected onto the
distance-concentration coordinate system. The purpose of the test is to determine if
our model correctly classifies an input odor as resembling one of the stored odors, or
leaves the input odor unclassified if it does not resemble any of them. The resem-
blance is expressed using a metric introduced in the Appendix. The stored odors have
a certain distribution in the concentration space. The distance D between the arbi-
trary input odor and its closest neighbor amongst the stored odors allows for testing
our model.

The inputs that caused an output to fire are indicated as points in Figure 4(a).
Majority of these points are gathered in the region of small D with various concen-
trations. This indicates that the odors which caused an output to fire were indeed close
to one of the stored odor patterns. The concentration level of the input odor does not
affect the models ability to classify the input as one of the known odor patterns.

On the other hand, all other input odors which did not cause an output to fire are
shown as points in Figure 4(b). These points tend to have large values of distance
function D. Any input odor that is too far from all of the stored patterns fails to
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Figure 4. Distribution of the simulation results. (a) Patterns correctly recognized. (b) Patterns that ame not
recognized.

activate the model outputs. Even strongly concentrated odors stay unclassified if they
lack resemblance to one of the stored patterns.

In order to compare Figure 4(a) and (b) a vertical division line is drawn. The line
separates the classified points from the unclassified ones in terms of the distance
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value D. Points to the left from the line manifest a resemblance to one of the stored
pattern odors and hence activate the output of the model. Most of the points stay on
the right side of the division line, as no stored pattern claims such resemblance.
Remarkably, the division line is vertical, which means that Hopfield's principle works
well separating the odor 'flavors' from their concentrations.

4. Discussion and Conclusion

Recognition of a single pattern is only one of the first stages of sensory information
processing. The higher-level problems of multi-pattern processing, such as object
recognition in real world, feature binding and segmentation, object-background
separation, attention focusing, etc. are much more difficult to model and they
are far from being handled by modern computational methods. However, all these
tasks are efficiently performed by cortical neural networks of animals and humans,
where different temporal correlation types are believed to be the underlying prin-
ciple of these abilities (Campbell and Wang, 1998; Malsburg and Buhmann, 1992;
Malsburg and Schneider, 1986).

Temporal correlation plays an essential role in olfactory systems as well. Experi-
mental results prove that several odors in a mixture are separated temporally from
each other at some of the higher levels (Jinks and Laing, 1999). One of the possible
ways to do such a temporal segregation is using temporal correlation and competi-
tion of output neurons (or neural ensembles) and inhibitory top-down feedback to
input level in order to temporally segregate recognition of different odors, suppress
noise or irrelevant inputs and focus attention on the necessary odor (Campbell and
Wang, 1998; Malsburg and Buhmann, 1992; Malsburg and Schneider, 1986). Phase
encoding, that is a specific example of temporal correlation is the basic principle of
our model and we believe it provides the base for the solution of the higher level
processing tasks presented above.

Appendix

This section introduces the transformation of odor vectors to the distance-concen-
tration space. Each component cj of applied odor vector, C, is logarithmically trans-
formed as in (2) to the corresponding components cpj of phase vector (p. In the same
way m stored vectors 4t, i = m ..... rn are transformed to m vectors (p,, where

Vectors (p,, and q are normalized in the phase space in the following way:

(0. ( o mn1)' } 1 .nC, = 1ps. -in •) ,,jn (9)

(p* = { 9j - minfq~j),j = 1__.. n) (I0)
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Each applied and then normalized phase vector p* = Ipj, j = 1 ... , n. is charac-
terized by its distance D to the closest of the wp¢ • This distance D is defined as:

D =m in(lIq* - 5'1t*ll) (11)

Thus D defines distance in the phase space from the vector applied to the closest of
the stored vectors.
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Signal Processing With Temporal Sequences
in Olfactory Systems
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Abstract-The olfactory system is a very efficient biological 2) The signal is a time sequence of spikes. Spikes may occur
setup capable of odor Information processing with neural signals. more or less frequently which has an effect on the average
The nature of neural signals restricts the information represen- value of the signal.
tation to multidimensional temporal sequences of spikes. The
information Is contained in the Interspike intervals within each 3) Spikes may occur in a certain temporal pattern. More pre-
individual neural signal and interspike intervals between multiple cisely, the inter-spike intervals may follow a distinct and
signals. A mechanism of Interactions between random excitations repetitive behavior. This allows for code division of infor-
evoked by odorants in the olfactory receptors of the epithelium mation conveyed by a single signal.
and deterministic operation of the olfactory bulb is proposed 4) Two or more signals may exhibit cross correlation which
in this paper. Inverse Frobenius-Perron models of the bulb's
temporal sequences are fitted to the Interspike distributions of typically results from synchronization between the signal
temporally modulated receptor signals. Ultimately, such pattern sources. If the synchronized signals assume a certain
matching results in ability to recognize odors and offer a hypo- spatial distribution, a set of such signals will manifest a
thetic model for signal processing occurring in the primary stage spatio-temporal pattern.
of the olfactory system. The neural signals of the olfactory bulb representing the infor-

Index Terms--Frobenlus filter, interspike intervals, Inverse mation about odors and intensities are further interpreted by the
Frobenlus problem, Markov process, odorant concentration, brain. The olfactory bulb functions as the first signal processing
olfactory bulb, shift map, temporal sequence. stage. In all nonbiological designs the first stage is responsible

for the sensitivity and noise performance of the entire detection
I. INTRODUCTION system. The same should hold true in case of the olfactory bulb.

L IVING organisms perceive odors as sensations caused A very detailed investigation of neuronal noise and spike prop-

by mixtures of odorant molecules. Such molecules ex- agation can be found in [3].

cite the olfactory receptors to respond with increased activity The goal of this article is to identify the simplest method

which is then passed on to the olfactory bulb for detection. of encoding odor information in temporal sequences. The

Various odorant molecules excite different groups of receptors. input-output interactions between temporal sequences can lead

A superposition of these excitations constitute the odor as to an odor detection and encoding mechanism in the olfactory

detected by the olfactory bulb [I]. The relative concentrations bulb.

of individual components constitute the odor type, whereas
the absolute concentrations determine the odor intensity. The II. TEMPORAL MODULATION

olfactory bulb has the task of transforming the input obtained The very input of the olfactory system, the epithelium, pro-
from the receptors into a set of signals to be interpreted by the duces an enormous number of signals. Receptors are hard-wired
brain. The capacity of a simple discriminator to distinguish the to detect specific odor components and are uniformly distributed
target from background odorants has been statistically analyzed in the epithelium. The odor information is therefore, spatially
in [2]. distributed across the epithelium and is assumed to have no tem-

The continuous quantities, such as molecule concentrations, poral dependency. Every odor and concentration can be repre-
cannot be directly represented by the signals produced by bi- sented by its "black and white photo" in which the gray levels
ological neurons. Neurons produce spikes and only indirectly of pixels encode spiking activities of the receptors. In this paper,
their presence or absence, or time location may carry continuum the odor information is assumed to be spatially distributed and
of information. The nature of neural signals is assumed to have static, although there is a strong evidence of various significant
the following characteristics. aspects of the inhale-exhale rhythm and the impulse response

1) There is no significance of the shape of individual spikes. of the olfactory bulb [5].
They simply mark instances of time when the neurons fire. No temporal coding of information is performed by the indi-

vidual receptors. Simply, the more molecules are present at the
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at the lowest detectable level c = ct, the receptor fires at the M. ODOR CHARACrERIZATION WITH
very slow rate of spontaneous activity. When the concentration INTERSPIKE DISTRIBuTIONs
grows infinitely large, the frequency reaches saturation at the An odor is a superposition of a number of basic odorants.
maximum firing rate of fm. The curve f(c) fits the following The concentration information is temporally modulated at the
definition:

glomerular inputs of the olfactory bulb, therefore, the percep-
2 tion of odor intensity must be related to the interspike intervals.

f = 7fm arctan/3(c - ct). (1) Increasing the odor intensity shortens the intervals at different
rates for each basic odorant due to the differences in their con-

The slope factor /3 is expressed in terms of the dynamic range Ac version gains. This provides some explanation why responses of
defined as the odor concentration at which the frequency reaches verains.ths provie o e a o r at re en t
80% maximum, f(ct + Ac) = 0.8f. Given the dynamic range, the mitral outputs can be different for the same odor at different
the slope factor can be determined as/3 = tan(O.8r/2)/Ac. intensities [8].

Concentration c, used in [6] and [7], is a logarithmic quantity In the glomerular layer the enormous number of inputs
related to the odorant molarity c = log m, with m in mol/1, converge into much less dimensional connections to the mitral
The investigated odorants were anisole (ANI), camphor (CAM), cells. The glomeruli are also highly interconnected between
isoamyle acetate (ISO), and limonene (LIM). The curve fitting each other via periglomerular interneurons [9]. Both inhibitory
resulted in the following parameters for each odorant [61: and excitatory connections are present within the glomeruli

which indicates that a winner-take-all mechanism could be in-
ANI CAM ISO LIM vol ved before the input to the mitral cells. The presence of such

fm 11 Hz 15 Hz 11 Hz 8 Hz a mechanism would enable arranging of the input interspike

c, I -6.7 I -8.6 -7.0 -7.7 intervals into distributions statistically representing the odor

S 1.1 1.1 0.5 [0.3. information.
Let R be the number of all types of receptors in the epithe-

Remarkably, linear curves are obtained if instead of spiking lium. This makes R also the number of distinct basic odorants,
frequency f, the interspike intervals r = 1If are graphed the basis for the odor space. Suppose the first four, out of all R
versus the reciprocal of molarity, referred to as sparsity s. Since odorants, are the ones shown in Fig. 1. An odor at a given in-
different odorants may have largely different molarity threshold tensity can be uniquely represented by a vector a of sparsities of
levels ct = log mt, the reciprocal of the incremental molarity the basic odorants. For instance, an odor created by mixing 0.5
s = 1/(m - mt) rather than the absolute value can be used mol of CAM and 0.75 molofLIMwith 100 MI of air would be
in the joint graph for various odorants. The parametric repre- represented by vector a = (co, 50, oo, 75, oo,... , oo) Ml/mol.
sentation of relationship (1) in the new coordinates (s, 7-) for Vector 2a would represent the same mixture diluted in twice the
the introduced odorants is shown in Fig. 1. The horizontal and amount of air. In general, an odor, as seen by the epithelium,
vertical axes are the incremental sparsity s and the interspike is 8 = (81, 82, .. ., sR). Terms "vector" and "basis" are under-
interval T expressed in terms of molarity m as follows: stood to be suitable ways to arrange numbers rather than the

1 strictly defined terms used in linear spaces.
S(m) = - (2) A much more compressed way to describe odors is through

/a -1distributions of interspike interval probabilities. This formalism
r(m) = 2.f,, arctan /3 log . (3) may also be more relevant to the signals presented to the mitral

\Mt inputs. Let the interspike intervals be quantized into N ranges
with cutoff rm,.. Interval 7m.. is considered to be a borderline

As can be seen in the figure, diluting the odorant in the air between evoked and spontaneous activity of the receptors. A
increases the interspike intervals at an approximately constant single neural signal can represent an odor with the interspike
rate. This may be regarded as temporal modulation with the con- interval 7- probability distribution p = (pl, P2,. , PN), which
version gain G = dr/ds, which is the slope of the line. The left is formally a vector of probabilities
side of each curve corresponds to the receptor saturation region.

By extrapolating the curves to the intersections with the ver- = ,r .. -m. if n < N
tical axis, a minimum interval 7o for each receptor type can be Pn = Pr(7m., < T"), if n = N. (5)
found of value roughly around 100 ms. This minimum interval
may be regarded the refractory period of the receptor. With just
two parameters "o and G for each receptor type, the temporal The quantized representation of the interspike interval distri-
modulation illustrated in Fig. 1 can be readily described using bution is chosen because it is more suitable for numeric com-
first-order approximation: putations than the probability density function. A satisfactory

approximation of continuum can be achieved provided that N
,r = ro + Gs. (4) is large enough.

Suppose the 0.5 mol of CAM and 0.75 mol of LIM mixture
The approximation can be validated only within the dy- with 100 M of air, indicated by the filled squares in Fig. 1, is
namic range of the receptor, that is, outside the saturation presented to the olfactory epithelium. Two kinds of receptors
8 > 1/(A l0AC). would be activated, each responding with spikes separated by
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Fig. 2. Odor composed of 0.5 mol of CAM odorant and 0.75 mol of LIM
odorant mixed with 100 M of air (filled bars) and then diluted in additional

100MI/mol 200M1/mol 300MI/mol 100 Ml of air (empty bars). The bars have width r.,_/N and represent
probabilities of respective time intervals as defined by (5). Example with
N = 20 and r_,, = 350 ms shown.

Fig. 1. Interspike intervals r of receptor firing versus incremental
sparsity a of odorant. Six points on each curve correspond to the following
logarithmic concentration levels (left-to-right): 1.2Ac, Ac, 0.8Ac, 0.6Ac, invariant distribution equal p* could serve as a first-order ap-
0.4Ac, and 0.2Ac above ct. The axes units are ms and Ml/mol. proximation of a dynamical system for that odor. Let N x N

matrix P be the transition matrix of the Markov process

roughly 90-ms intervals and 175-ms intervals, respectively, ac-
cording to Fig. 1. Suppose also that there is twice as many LIM p(k + 1) = Pp(k). (6)
receptors as those detecting CAM. In the winner-take-all com- Also, let the process converge to p in a sense that
petitions, the LIM receptors would have a better chance passing * = lietkth p(k) for almost every initial distribution
its signal compared to the CAM receptors. The described odor p* = li an-. distrkbufon ist eve ta oftribution
is represented by the filled bars of interspike interval probabil- p(0). The invariant distribution is the eigenvector of transitionitis i Fi. 2 Te pobailiy f te 15 m LM iteralsismatrix P associated with the unit eigenvalue: pa* = Pp*. In
ities in Fig. 2. The probability of the 175 ms LIM intervals is this respect, the Markov process is a dynamical system in
twice the probability of the 90 ms; CAM intervals probabilistic space S = {p E [0; 1]N I,,p, = 1} with a

Suppose further that the same odor mixture is now diluted stable fixed point p*. Further on, space S will be referred to as
in twice the amount of air. This doubles the sparsity of the the odor space.
odor, hence, increasing the interspike intervals of both odor- Consequently, an odor may be associated with an operator
ants present in the mixture. The diluted odors are represented in P : S --* S in the odor space. The odor itself is the stable fixed
Fig. 2 by the empty bars of probabilities. Now the LIM intervals point of the operator. There is a benefit of such a representation
are about 220 ms and the CAM intervals increased to about 100 of odors. Operator P defines an odor indirectly through a defi-
ms without a change to the probability levels. Note that the two nition of a dynamical system. It is easy and natural to generate
odorants have different conversion gains and modulate the tern-pora inervls t dffeentmte. Astheodo inensty hanesrealizations of neural signals using such operators, which is suit-poral intervals at different rates. As the odor intensity changes, able in the modeling effort. There are many operators that have

this changes the probability pattern. A different hypothesis of a e in varin distrt. hee e a m o dor tnforha-

time advance modulation where the resulting pattern is invariant tho me redudant ebedde n m drn res
unde th cocenraton eve wasinhducd i [1] ad lads tion may be redundantly embedded in many different processes.under the concentration level was introduced in [101 and leads Another approach to representing odors with Markov processes

to functional models [ 11 ]. However, the neurophysiological ev- is presented in [ 13].

idence suggests that the patterns of bulbar activity actually do Formallyd i o odcv e
chane wen vryig te odr itensty 8].Formally, a realization of the introduced Markov process is a

change when varying the odor intensity [8]. sequence of interspike intervals {rk}. Define the interval range
The signal processing occurring between the mitral cells and to be Tn = [(n - 1/N)-max; rmax) if n < N, and TN =

glomerular layer is a dynamical process. The information is em- [rm..; oo) otherwise, where the interval range index n is defined
bedded in the time realizations of signals. It may be retrieved in the same manner as in (5). For the sake of modeling through,
only through observation of these signals for a period of time. optimization, a particular operator P may be developed to have
The probability distribution of the interspike intervals may be p* as its invariant distribution of interspike intervals over time.
retrieved by statistically analyzing the neural signals. Likewise, Denote the elements of the operator by Pij, so that P = [Pij],
a simple stochastic process can be modeled to have the statis- where i and j are the row and column indexes. Number Pil is
tical properties representing a given odor through the probability the probability that in the Markov process (6) an interval from
distribution, the range T will follow the interval from the range Tj:

Suppose, in steady-state after all the transient response has
vanished the odor is represented by the probability distribution Pij = Pr(rk+l E T and rk E T)
p* defined according to (5). A Markov process [12] with the Pr(mk E Ti) (7)
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There is no closed-form formula for selecting Pljs for a given v(P
p*. However, starting with some random Pis, an optimization 4

algorithm can be used to find the Pijs as the minimum of a
suitable cost function. Since all P 1 s are probabilities, they must
be numbers in the unit segment from 0 to I. This fact allows for
constructing one of the components to be included in the cost

function, namely, the unit segment potential. For each number 2
Pij, a potential function v(Pij), shown in Fig. 3, describes how

distant Pij is from the unit segment

(2P 3 - 1)2

1 + (2Pij -1)- 6  (8)

Function v attains the minimum in the middle of the unit seg- -0.5 0.5 1 1.5 J

ment and is maximally flat within the segment. The maximally Fig. 3. Unit segment potential function. In the total cost function, numbers
flat approximation [14] with a rational function is chosen to fa- Pij E [0; I contribute much less than numbers P'j outside this range.

cilitate the optimization process. The partial costs v(Pi) sum up Minimization of w will attract all Pij s toward the inside of the unit segment.

to the cost function component E,, (P) responsible for keeping
all the entries of P within the unit segment zeroing of negative values and normalization of columns. The

N N principal eigenvector of P is not very sensitive to such trimming

E.(P) =Z E Ev(Pij). (9) of P.

i=1 j=1 IV. EMBEDDING DISTRIBUTIONS IN TEMPORAL SEQUENCES

Operator P is a probabilistic matrix in a sense that all its

column vectors are normalized probability distributions. There- As illustrated in the example shown in Fig. 2, the probabilistic

fore, the column sums of P must sum up to 1. Another cost representation of odors and intensities fits well the random na-

function component E,(P) measures the deviation from this ture of excitations received from the olfactory epithelium. The

requirement Markov model is also a natural candidate for a simple approxi-
mation of the dynamics behind spike interactions driven by the

N j 2 receptors. The olfactory bulb, however, should be considered a
E,(P) = 1 - P (10) deterministic system which has no random variables other than

Z=1 P= ) the input received from the epithelium. Moreover, the olfac-

If operator P is a well defined transition matrix of Markov tory bulb is capable of self-excitatory activity in response to the

process (6), then the cost sum E (P)+E (P) is low and close to input. This may be the factor contributing to both high sensi-

its minimum attainable value. The goal of the cost minimization tivity and high selectivity of the sense of smell [15]. From this

procedure is to develop operator P with the constraint that p* is perspective, it seems reasonable to regard the olfactory bulb as

it's principal eigenvector associated with eigenvalue 1. To sim- an active medium rather than a passive relay of receptor signals.

plify the operator synthesis, matrix P will be assumed to be di- The olfactory bulb actively produces firing activity in response

agonalizable: P = BAB - '. The diagonal matrix A = diag(A) to the receptor signals [16].
A sequence of interspike intervals complying with a given

is composed of N eigenvalues A = (the, A2 ,.. . AN) of ( interval distribution can be generated in a deterministic dynam-
Let A1 = 1. The convergence rate of the dynamical system (6) ical system. The simplest such system is a one-dimensional map
heavily depends on the radius of the remaining Ais for i > 1. constructed by solving the inverse Frobenius-Perron problem
Operator P is synthesized with random Ais, for i > 1, with [17]. The overall goal of the search for a sequence generator is
the assumption that I Ai I < r < 1 and the radius r is kept low to be able to represent the odor information by a distribution of
to improve the convergence rate. In the numerical experiment r interspike intervals. A simple shift map can be constructed di-
was selected to be equal to 0.2. Operator P is diagonal in the rectly from the probabilistic operator used in approximation (6),
basis constructed with the column vectors of B. Since A, = 1, as described in detail in [18].
the first column vector of B is p*. More precisely, Bij = p* First, a piecewise linear map f : [0; N] --- [0; N], [0; N] C R
for j = 1. All other entries Bij, for j > 1, are variables in the is derived from probabilities included in the operator P
optimization process. Their initial values are selected randomly
from the uniform distribution in the range (-1; 1). Final matrix Ax)= -x-+ P10 +N-i,
B is found using an opti zation algorithm to minimize the cost( 1

function as in the following expression: i1
min [E,,(P)+E,(P)]. (11) ifj Pj X<j+Pij- E Pmj. (12)

B.,1 j>t M=1 m=

The minimized solution oftentimes needs a final touch to make As shown in Fig. 4, map f is composed of N 2 linear segments
sure that P has no negative entries, no entries greater than one corresponding to N 2 numbers Pij. The slopes of the segments
and that column sums of P are indeed 1. This can be done by are simply 1/Pij. To evaluate f(x), the pair of indexes i and j
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appropriate for a given x needs to be identified using the condi- 3 P1. P..
tion provided by (12).P 1 P 2

By scaling the domain and range of map f, the dynamical
system generating temporal sequence {rk} can be defined with
the help of shift map h 2 2

h(r) N - TmXf 1 (13) fix) P 2 P2
Regardless of the initial condition chosen, subsequent map-
pings with h will determine sequence {I-rk} whose distribution 1- -

of values converges to the invariant distribution of process (6).
A deterministic dynamical system 31 32 /3

rk+l = h(rk) (14) 0 0 123

may be regarded as a generator of realizations of neural signals
for a given distribution of interspike intervals.A numeric example of shift-map synthesis is shown in Fig.4. Example ofa piecewise linear shift map f(x). Functionf is composed

of N continuous branches fj - [ - I, j) - [0; NJ. If x is chosen randomly
Fig. 5. Three interspike-interval distributions p , pl, and p from the uniform distribution over the range (0; N), the conditional probability

are selected randomly to characterize three hypothetical odors A, P, that f(x) E (i - 1; i) given the fact x E (j - 1;j) can be evaluated by

B, and C. The bars represent probabilities p,, of respective time P f = ([i - 1; i]) 1. Example with N = 3 shown.

intervals as defined by (5). The horizontal axis is normalized
such that interval Nrmax/(N - 1) corresponds to 1. Shift where c E [0; 1] is a constant parameter. When Ck = 1, the filter
maps hA, hB, and hc are evaluated for the example odors is receiving the input rin. The opposite position of the switch
and shown in the middle row of figures also in time-normalized (Ck = 0) lets the shift map determine the output time interval
coordinates. The maps have N disconnected branches, however, based on the previous interval as in (14). The overall filter equa-
vertical lines connecting the branches are added to enhance tion reads
the graphs. Starting with a random initial interval, each map
iterated 3000 times according to (14) produced a temporal Tk+i = h [Gin + (1 - k)Tk. (17)
sequence. The sequences are shown in the bottom row of
figures. Each interval in a sequence is indicated as a point The notion of the switch is an attempt to model a competition
whose vertical coordinate is the normalized time. This way between the input and the feedback. Its random operation is in-
the density of points reflects the original distribution plots if herited from the random nature of the input temporal sequence.
rotated clockwise by 900. The three shift maps hA, hE, and hc, introduced in Fig. 5,

are used to illustrate the function of the Frobenius filter. Each of

V. FROBENiUS FILTER FOR TEMPORAL SEQUENCES the shift maps was stimulated at the input by values generated
by probability distributions p , pB, and p representing three

It is broadly accepted that the olfactory bulb provides sup- different odors. Fig. 7 shows all possible input-filter combina-
port for a pattern recognition mechanism for odor detection and tions arranged in the following nine pairs:
classification. Not all of the recognition is taking place there,
but definitely the process is initiated in the olfactory bulb. As- (p* , hA) (p*, hA) (pa, hA)
suming that the temporal sequences of interspike intervals are A B

carriers of odor information, an implementation of signal pro- (, h (pt, hB) (pa, hB)

cessing system (14) can be proposed. Ultimately, the goal is (p , hC) (pl, hc) (p , hc). (18)
to demonstrate usefulness of the proposed mechanism in odor
recognition. In each instance, K = 20 000 values random values 'n were

The signal processing scheme shown in Fig. 6 will be referred drawn from the input distribution and applied with probability
to as the Frobenius filter. The input to the filter is a temporal se- c = 0.5 to the filter. The values drawn were also sorted in the
quence whose interspike intervals are determined by the random ascending order and stored. In the sorted input sequence {ui }
variable rn with values governed by the probability distribution the following property holds: i < j =- u, < ui. When plotted,
pin defined as in (5). Distribution Pin characterizes an odor. the graph of the sorted sequence would resemble the shape of

The Frobenius filter is simply a shift map with the feedback the cumulative distribution function of the random variable T-n.

loop controlled by a random switch. The switch operation is The realization of the sequence {rk} generated by the
described by a two-valued stochastic process C : {0, 1} x N _ Frobenius filter for K iterations were also sorted in the same
R. The filter is producing time intervals based on the switch manner. The sorted output sequence {ti} was then compared
position. At every interval k, the switch position depends on the to the sorted input sequence in Fig. 7. More precisely, the
value of Ek governed by probabilities graphs in the figure are the sequences of quadratic distances

{(u, - t,) 2} in each of the nine instances. The horizontal line
Pr(Ck = 1) = c (15) is the mean-square value of the distance (Ui, - t,) 2 . As seen
Pr( k = 0) = 1 - c (16) in the figure, the input-output sequences generated in pairs
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Fig. 5. Synthesis of temporal-sequence generators. Three example interspike-interval distributions with N = 20 representing three different odors are shown in
the top row. The corresponding shift maps and distributions of values of generated temporal sequences are shown underneath. The time interval axes are normalized
to the range of (0; 1). Each graph in the bottom row contains 3000 points representing interspike intervals placed vertically according to the length of the interval.

filters. The extremes correspond to no-input (c = 0) and the
Pr= Ic open-loop (c = 1) conditions. In this regard, c represents the

Shiftmap - k strength of the input coupling. With no input, the entire system
Ti becomes a simple pattern-matching mechanism. In the open-

Pr=c loop condition, the output is driven by the input through the filter
mapping h. In both cases if the input is a stationary process,

Fig.6. Frobenius filter is a shift map with input. Either the input interval ri, or the filter output is also stationary and the distance r - t can
the present output interval Tk is transformed into the next output interval kr+I be flted . H oweverothre wil be osganc ui f the

be evaluated. However, there will be no gain resulting from the

synchronizing effect imposed by the switch.
(p', hA), (pl, hB), and (pa, hC) are synchronized in a sense
that the quadratic distance between input and output interval VI. CONCLUSION
distributions is small. The distances in all the other pairs are
significantly larger. By detecting low distance between the input The details of how the cells of the olfactory bulb could en-
and the output of the filter, an odor recognition mechanism can code the information in the way described in this paper are not
be devised, discussed here. The goal set for this work was to describe the

Two examples of realizations of the input and output temporal simplest method of encoding information in temporal sequences
sequences are shown in Figs. 8 and 9. The proposed mecha- and show the input-output interactions which can lead to an odor
nism uses a pattern matching phenomenon which signals suc- detection and encoding mechanism. All the computations are
cessful detection as a decreased distance between parameters of very simple. No memory is necessary, only the last time interval
the input and the output neural signals. The pattern matching is locally kept in the evaluation of the next time interval in the
is not based on coherence of the two signals. As shown in the output sequence. Actual neurons are capable of performing such
figures, no similarity in realizations of the input and the output a storage with their inherent leaky integration.
can be observed in either the matched or unmatched odor-filter The computational complexity of the model depends on the
pairs. In case of the matched pair, the similarity is in the statis- resolution N of the interspike interval distributions. It deter-
tical properties of the input and the output signals. mines the dimensionality of the Markov transition matrix. Mini-

Value c = 0.5 used in the experiment is the midpoint of the mization (11) is the most time-demanding computation involved
probability range. The value of c may be selected to optimize in the approach and takes a significant amount of time to eval-
the performance with respect to different numbers of odors and uate. The minimization may be regarded as the learning process.
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Fig. 7. Nine instances of a Frobenius filter stimulated by an input distribution for 20000 iterations. Quadratic distance di = (u, - t,)2 between cumulative
distributions of interspike intervals at input ui and output t, of the filter shown. The graphs are arranged according to (18).
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Fig. 8. Realizations of the input (top) and output (bottom) temporal sequences Medicine, Medford, MA.
for a matched pair (p , hA ). A fragment containing 100 spikes shown.
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Abstract

The ability of bifurcating processing units and their networks to rapidly switch between different dynamic modes has been used in recent
research efforts to model new computational properties of neural systems. In this spirit, we devise a bifurcating neuron based on control of
chaos collapsing to a period-3 orbit in the dynamics of a quadratic logistic map (QLM). Proposed QLM3 neuron is constructed with the third
iterate of QLM and uses an external input, which governs its dynamics. The input shifts the neuron's dynamics from chaos to one of the stable
fixed points. This way the inputs from certain ranges (clusters) are mapped to stable fixed points, while the rest of the inputs is mapped to
chaotic or periodic output dynamics. It has been shown that QLM3 neuron is able to learn a specific mapping by adaptively adjusting its
bifurcation parameter, the idea of which is based on the principles of parametric control of logistic maps [Proceedings of the International
Symposium on Nonlinear Theory and its Applications (NOLTA'97), Honolulu, HI, 1997; Proceedings of SPIE, 2000]. Learning algorithm
for the bifurcation parameter is proposed, which employs the error gradient descent method.
© 2003 Elsevier Ltd. All rights reserved.

Keywords: Bifurcating neuron; Quadratic logistic map; Chaotic attractor; Saddle-node bifurcation; Period-3 orbit window

1. Introduction parameter), undergoes transition to chaos via period-
doubling cascade, intermittency and crises of chaotic

Limitations of the static nature of artificial neural attractors, emerging windows of periodic activity, etc. as
networks (ANN) stimulate investigation of biologically shown in Fig. 1. (Feudel et al., 2000).
motivated neuron models with inherent dynamics, such as More typically, chaotic neural dynamics emerges at
bifurcating and chaotic neurons (Farhat, 2000; Farhat & macro-level, in the network of dynamical units. Seminal
Eldefrawy, 1992; Farhat, Lin, & Eldefrawy, 1994; Holden, results of Freeman and co-workers (Freeman, 1988) suggest
Hyde, Muhamad, & Zhang, 1992). In the networks that the state of the olfactory bulb in olfactory system, when
composed of such neurons information is processed by unperturbed, is wandering within high-dimensional chaotic
convergence not only to a fixed point, but also to a limit attractor. Applied input (odor) shifts the system to one of its
cycle or chaotic attractor (Farhat, 2000; Farhat, Lee, & Ling, low-dimensional attractors, 'wings', that correspond to the
1998; Hirsch & Baird, 1995; Lee & Farhat, 2001). recognized odor.

Artificial neurons commonly used to mimic dynamics of Dynamics of the network of parametrically coupled
biological neurons are simplified versions of the Hodgkin- logistic maps was explored in (Farhat, 1997, 2000; Farhat
Huxley type model (HEM), such as, for instance, integrate- et al., 1998). It was shown that such networks may have

and-fire neurons. These models demonstrate very rich enormous memory capacity due to the astronomical number

dynamics, with a variety of bifurcations and chaotic of different coexisting dynamic attractors. The lattices of

phenomena (Farhat & Eldefrawy, 1992; Farhat et al., chaotic maps were studied in Dmitriev, Shirokov, and

1994; Feudel et al., 2000; Holden et al., 1992; Izhikevich, Starkov (1997), Kaneko and Tsuda (2000) and Sinha and

2000). For example, dynamics of interspike time interval of Ditto (1998). Chaotic dynamics of a network was also

biological thermally sensitive neurons with increasing explored in Adachi and Aihara (1997) and Hoshino, Usaba,

temperature (which is both its input and bifurcation Kashimori, and Kambara (1997), and applied to an
engineering application: a search of an optimal solution of

Corresponding author. the traveling salesman problem (Tokuda, Nagashima, &
E-mail address: j.mzura02@louisville.edu, (J.M. Zurada). Aihara, 1997). Encoding with the trajectory of the system's

0893-6080/$ - see front matter C 2003 Elsevier Ltd. All rights reserved.
doi: 10.1016/j.neunet.2003.09.003
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Fig. I. (a) Bifurcation diagram of the modified Hodgkin-Huxley model of the thermally sensitive neuron. Interspike intervals T, versus bifurcation parameter,
temperature T (From Feudel et al., (2000). Chaos, 10(1)). (b) Bifurcation diagram of quadratic logistic map x,, = Rx,(l - x,), x, values versus bifurcation
parameter R. (c) Zoomed in version of (b): Emerging of period-3 orbit.

state in the phase space realized in a network of FitzHugh- 1993) as an abstract model of a chaotic processing element
Nagumo spiking neurons was studied in Rabinovich et al. , = R.,l - X) (I)
(2001).

In biological neural circuits, input may not be presented Bifurcation diagrams of QLM and modified HHM of
by initial conditions. It is, rather, one of the bifurcation thermal neurons are shown in Fig. 1 (a) and (b). The reasons
parameters (Feudel et al., 2000; Fukai. Doi, Nomura, & of their striking resemblance are saddle-node, period-
Sato, 2000; Koch, 1999). Dynamics of thermally sensitive doubling and other common basic bifurcations which
neurons (Braun, Eckhardt, Braun, & Huber, 2000; Feudel underlie these dynamics. Period-doubling cascade route to
et al., 2000; Gilmore et al., 1999) is a good illustration of chaos present in both of them is one of the fundamental
this idea. This input-as-a-bifurcation-parameter concept, bifurcation scenarios which is behind a huge number of
explored in Farhat and Eldefrawy (1992), Farhat et al. processes-from a population dynamics in ecological
(1994) and Holden et al. (1992) provides an insight of how systems, to chemical reactions, like the one of Belousov-

microscopic fluctuations of an input may be able to change Zhabotinsky (Kaneko & Tsuda, 2000). Computational
the system's global dynamics. abilities of the bifurcation processes in the logistic maps'

dynamics have been studied extensively in a number of
works (Farhat, 1997, 2000; Farhat & Eldefrawy, 1992;

1.1. Why maps? Farhat et al., 1994; Lysetskiy et al., 2002). In this article, we
focus on one of the numerous bifurcation processes-

Biologically realistic modified Hodgkin-Huxley neuron collapse of chaos to a period-3 orbit in the QLM dynamics
models are barely analytically tractable due to a huge and its potential computational properties.
number of variables and bifurcation points. However,
certain aspects of their activity, for example, the dynamics 1.2. Dynamics
of the interspike time intervals, can often be described with
dynamics of sine-circle and other maps, which are, Here, we briefly review the QLM dynamics which is used
generally, easier to work with Ermentrout and Kopell in the following sections. With bifurcation parameter R <
(1998) and Farhat and Eldefrawy (1992, 1994). In this 3, the system x,+I = f[x,] (Eq. (1)) has a single stable fixed
article, as in Farhat (1997, 2000), Farhat and Lee (1998) and point (Fig. l(b)). First period-doubling bifurcation occurs
Lee and Farhat (2001) we use the dynamics of quadratic when R = 3. With R increasing further, the system under-
logistic maps (Figs. I and 2, Eq. (1)) (Holngren, 1996; Ott, goes period-doubling cascade and at the critical point
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Fig. 2. (a) A neuron with a sigmoidal activation function as a logistic map and its dynamics. (b) Example of quadratic logistic map x,+, = Rx,(l - x,)
dynamics: period-3 orbit. (c) Third iterate of QLM x,+3 = f

3 
[x,] = fLf[f[x]]], R = 3.75: three stable fixed points are about to be born via bifurcations. (d) The

distances AA, AB, and AC (Eq. (5)) to the corresponding bifurcation points a., b,,, and c. (Eq. (3)) are identical only for a single critical value of R (in this
working range of R).

R, - 3.57 it becomes chaotic. Due to the fractal structure of by Eq. (3)
the bifurcation diagram, there is an infinite number of values
of R, at which chaotic attractors the system lives on df 3 [x]
collapse, producing stable periodic orbits. _ = 1 (3)

In this article, we focus on the period-3 orbit which

emerges when R3 - 3.828 (Fig. 1(b) and (c)). Its appear- This produces three neutral fixed points via three saddle-
ance is due to three saddle-node bifurcations, giving birth to node bifurcations. The points, then, split into to three stable
three stable and three unstable orbits out of chaos. How this and three unstable solutions. We name them correspond-
phenomena happen can be easily seen graphically. Period-3 ingly A, B, C, and A,, B, C. The stable solutions exist
orbitwhile they satisfy Eq. (2a), but as R further increases they
orbit (fixed point) of the mapf 3[x,] =f[f(f[x]]] (Fig. 2(c)). loose their stability via period-doubling bifurcations.

Fixed point x* of the system Xt+ 3 = f 3 [xt] can be defined as a

point of intersection of curves X,+ 3 =f 3[x,] and x,+ 3 = xt
(Figs. 2(c) and 3). Stability of x* is defined by Eq. (2a-c) 2. Input-induced bifurcations

dx (2a) 2. 1. Dynamics

In order to make the emergence of stable orbits
dx ; (2b) compute, we shift function f 3[x] vertically with input I

(with weight w)

df3 [ > dx (2c) x,+3 =f 3 [x,] - w1 (4)

Fixed point x* is stable, neutral or unstable if, respectively, With this input, which is an additional bifurcation
condition (2a), (2b) or (2c) is satisfied. parameter, the system demonstrates quite different

When R is slightly less than R3, mapf3 [x] has no stable dynamics and bifurcation scenario. With R < R3 it has
fixed points and its state wanders within chaotic attractor no stable fixed points and lives on a chaotic attractor.
(Figs. I(c) and 2(c)). However, if R =R 3, the curve X,+ 3 = Now, if we increase I starting from I= 0, the curve
f 3[xt] touches the line x,+ 3 = x, simultaneously in three x,+3 =f 3[x,] - wi will touch the x,+ 3 = x, line at three
saddle-node bifurcation points as,, ben and c,,, defined distinct input values (Fig. 3). This happens because with
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Fig. 3. (a) Function x,+3 =f
3

[x, =ff[ff[x]] - wl of QLM3, R = 3.805. (b) Emergence and disappearance of fixed points via sequence of saddle-node
bifurcations with different inputs. Black and empty circles correspond, respectively, to stable and unstable fixed points.

the same R the distances stable point B, emerges via saddle-node bifurcation (Fig. 3b:
Column B, I = 5.0). At this moment (chaotic) dynamics ofx

AA =fan] - as, ABf(b] - b(5) converges to the stable point B. (Figs. 3(b) and 4). The

AC =f 3[C5 ] -same bifurcation mechanism underlies the emergence of the
s Csm stable fixed point C, (and then, the loss of its stability) whenat the bifurcation points a, bsn and c, (defined by Eq. (3)) 1 is negative, and the function f 3[x] is shifted upward.

are different (see Fig. 2(c) and (d)). The distances AA, AB,
and AC are defined as the solutions of the equation ,, .

0 8P
A =f 3[x*,R*] - x* (6) 0.

0.4i.

with a given R* and x*. Generally, Eq. (6) has multiple 021?
solutions. However, in the range of R we are interested in, the . .
solution of Eq. (6) with x. equal to a,,,, b. and c,. and given
R* areunique, except forR = R3,whenAA = AB = AC = 0 0"06

(Fig. 2(d)). .4 . .

Thus, the shift wi = AA induces a single saddle-node
02bifurcation: the curve X+3 = f 3 [x] - wi touches the line

X,+3 = x, at a single point x, = as. It splits then into stable -3 0 3 6 . 12 15

fixed point A, and unstable A, (Fig. 3b: column A, I = 2.0) \1 ..
when the shift is increased. The chaotic attractor collapses 0. !.!.: ,:"=

and the state of the system converges to A3, as is shown in ' 0 ! . . .
Fig. 4(1 = 1.81). oat

As I keeps increasing, A, looses its stability via period- .
doubling bifurcation according to Eq. (2c). Dynamics of x -3 0 3 6 9 12 15
undergoes cascade of these bifurcations and becomes Fig. 4. Dynamics of the map x,+3 =f3[x,] - wl with R = 3.805, versus 1.
chaotic (Fig. 4). Then, when the shift wl = AB, another Three input intervals are mapped onto three stable fixed points A, B and C.
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Let In and Ipd be the inputs that produce, correspondingly, w = 0.01) are calculated with Eq. (2b and c) as follows
a stable fixed point via saddle-node bifurcation (Eq. (2a)) and
loss of its stability via period-doubling bifurcation (Eq. (2c)). A IA = 1.81 < < = 3.02

The map's dynamics at the critical points A, B and C can be
seen, then, as an analog of a perceptron, as it divides the input B: 18 = 4.5 1 < p = 7.48 (8)

interval into two subintervals. One of them produces a stable -
fixed point and is defined as C =

I. < III < I, (7) Simulation results (Fig. 4) demonstrate that QLM3 neuron
maps the set of input intervals onto the set of invoked stable

where sign of I is the same as of the corresponding distance fixed points A, B and C.
A (6). The inputs outside of this interval do not invoke a It should be noted that if 1 # 0 the map Xr+3 =
fixed point and the system remains chaotic or stays on a f 3[x] - wl no longer maps the interval [0,1] on itself.
periodic orbit. Two 'runaway' regions appear at the edges of the interval

It should be noted that extension of the system for the [0,1]. They are defined as: 0 < x < x, and 1 - xc < x < I,
case when I and w are vectors is rather straightforward. The where x, is the leftmost solution (for xc E [0, 1]) of
QLM3 neuron x,+3 =f3[x] - Y-wj/j maps multidimen- equation f 3[x*]- wi = x* if the shift is downward
sional space to the induced stable fixed point in the same (I > 0), and x, is its rightmost solution (for x, ( [0, 1]) if
way as it does with one-dimensional input (Fig. 4). 1 < 0. In our simulations, where the input maximum, Im =

15 is positive and R = 3.805, the critical value xc =
2.2. Simulation 2.9 X 10- 3, which slightly restricts the set of initial

conditions to [xe, I - xc].
In the following simulation example bifurcation par-

ameter is set at R = 3.808. The reason behind this choice is
that the widest period-3 orbit in the map's dynamics 3. Learning
(Fig. 1(b) and (c)) emerges with R3 = 3.828; R0 = 3.808 is
slightly less than R3, so the system is chaotic, but its stable The sizes and centers of the intervals mapped by QLM3
states can be produced by a small input, neuron to its output states depend on R (Eqs. (6) and (8), Fig. 5)

The saddle-node bifurcation points, at which the curve and w. To adjust w, one of the learning algorithms for the
X1+ 3 = f 3[xt] - wi touches x,+ 3 = x, line are defined by Eq. multilevel neurons would be appropriate, for example, the
(2b): a = 0.1604, a = 0.1501, b.. = 0.5157, bp = one described in Malinowski, Cholewo, and Zurada (1995).
0.4851, cs, = 0.9556, cp = 0.9588. Input intervals Eq. (7) We focus on the other option provided by QLM3
that produce emergence of fixed points A, B and C (with neuron-the learning of the bifurcating parameter R. It

x

. .. .. :,•....

-3 0 3 6 9 12 15

R=3.805:

-3 0 3 6 9 12 15

-3 0 3 6 9 12 e5

Fig. S. Parameter-depending mapping: examples of the input intervals inducing stable fixed points with different values of bifurcation parameter R.
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Fig. 6. The mapping of the input interval as a function of bifurcation parameter R.

is, in a sense, analogous to the optimizing the steepness closest to the applied input J0: Ej = mini [E],j( E A, B, C),
of the activation function of a sigmoidal neuron to and then the error Ej has to be minimized. In the case of
maximize the information of its output (Bell & supervised learning the corresponding centerline is defined
Sejnowski, 1995). by the teacher's signal.

The mapping of QLM3 neuron as a function of R is Examples of simulations of the proposed learning
shown in Fig. 6, where the centers of mapped intervals (also algorithm (Eq. (11)) are shown in Fig. 7. The task was to
functions of R) are described as curves GA(R), GB(R), learn mapping of input 10 = 6 to the desired output B. With
Gc(R). To make an input 1o produce a desired output, for initial conditions R0 = 3.77 and R0 = 3.82 this input
example a stable state A, R should be adjusted in a way to produces chaotic and period-2 orbits, respectively (Fig. 6).
put 10 into the interval mapped to A : IAn(R) < 10 < 1A (R) After 70 learning steps (Eq. (11)) R converged to R = 3.805
(Eq. (7)). Defining it more strictly, we want the input to be in (Fig. 7(a)) and it produced desired output B (Figs. 4 and 5)
the center of this interval, 10 = GA(R), defined with Eqs. (5) with the errors E = 6.7 X 10- 4 and E = 4.4 x 10- 4 respect-
and (9) as ively. Dynamics of E is shown in Fig. 7(b). The learning

1 coefficient used c = 2 x 10-6.
GA(R) = 2(IUs(R) + Ir(R)) Thus, this learning method enables the QLM3 neuron to

I adjust adaptively its bifurcation parameter R to map certain
= 2f3[a., R]-as)+(f3[ap,R] - apd)) (9) input intervals to specific stable states (classes). Theupgrade of R changes the mapping of all intervals/clusters

Thus, learning of mapping 10 to A transforms to the task of (three, in our case) simultaneously (Figs. 5 and 6).
minimizing the distance 110 - GA(R)I (Fig. 6). The error
function can, then, be defined as a square of this distance

4. Discussion

E(R) = (10 - G(R)) 2  (10) This article explores computational abilities of control-

This brings the error gradient learning rule to the following ling the collapse of a chaotic attractor to the stable orbits in
form the dynamics of a quadratic logistic map. Such control is

dE implemented with an external input (additional bifurcation
AR = -c -= 2c(I0 - G(R))G(R) (11) parameter) to the third iterate of QLM. The resulting

processing unit, QLM3 neuron, demonstrates a richer
where G'(R) stands for the derivative of G(R) and c is the repertoire of behavior than a classical artificial neuron
learning coefficient. with sigmoidal activation function. Besides saturated

To implement unsupervised learning the learning regions, where inputs from certain intervals/clusters invoke
algorithm has to choose the centerline Gj(R) which is different stable states, QLM3 neuron also produces chaotic
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Fig. 7. (a) Dynamics of the bifurcation parameter R during learning. (b) Error E during learning.

or periodic dynamics in response to the rest of the inputs, the action editor, who have provided many insightful
Another potentially useful property of the QLM3 neuron is comments helpful for revision of this paper.
its ability to adjust adaptively its mapping by learning the
bifurcation parameter value.
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Abstract cortex models which are based strictly on the known
biological data and produce spatio-temporal dynamics

Biologically inspired model of the olfactory cortex is similar to the one of experimental data [11], [161. How-
proposed which realizes mapping of the input pattern ever, they do not explain the functional significance of
temporal structure to the spatial dynamic of the ensem- this dynamic, which is believed to be related to cortical
ble of output integrate-and-fire neurons. The temporal- information processing.
to:spatial mapping and distributed representation of the
model allows realization of both rough cluster classifica- Our model is an attempt to solve the problems of multi-
tion and fine recognition of patterns within a cluster in pattern spatio-temporal processing the brain is dealing
parallel and as parts of the same dynamic process. The with using the tools which are believed to be present
temporal structure of the system provides the base for in the cortex. The temporal structure of our network
the modeling of multi-pattern processing. The model provides the base for the solution of many higher-level
is able to extract components of complex odor patterns tasks mentioned above. One of them is the problem of
(which are the spatio-temporal sequences of neural ac- coarseness-sensitivity flexibility. A course enough sys-
tivity), segment and bind them temporally tem cannot distinguish fine variations of the patterns

within a cluster, on the other hand, a sensitive enough
system is not able to detect what cluster the slightly

I Introduction different patterns belong to. The architecture of a net-
work of spiking neurons described in Section 3 is able
to realize both fine and rough recognition of odors en-

Flexible object recognition, feature binding and seg- coded as spatio-temporal sequences.
mentation, attention focusing and other pattern pro-
cesaing tasks are hardly handled by pattern recogni- Another group of tasks handled by biological systems
tion techniques based on stationary principles. On the includes feature binding, segmentation, attention fo-
other hand, they are successfully resolved by biologi- cusing and other multi-pattern recognition problems.
cal neural systems, where different kinds of temporal There is experimental data that suggests that in the
dynamic and temporal correlations are believed to be brain they are solved with the temporal processing
underlying principles [21,[4],[11]. [4],[8), and there are models that propose the possi-

ble mechanisms [2],[51,[11]. In section 4 we show that
Olfaction is an example of such a system, in which the temporal structure of our model allows us to realize
spatio-temporal dynamics was a subject for numerous the multi-pattern processing in the olfactory cortex.
experimental studies [3],[9],[10],[12],[13], and theoreti-
cal modeling [1], [71, [16]. However, most odor recogni-
tion techniques do not make use of temporal encoding
and processing. In such systems static patterns are rec- 2 Olfactory System
ognized by the stationary pattern recognition methods,
which do not appear to have much in common with bi- An odor identity is defined by a group of physical
ological temporal dynamics. and chemical parameters of the odor's constituent

molecules and their relative concentrations. However,
On the other hand, there are a number of olfactory these parameters are not clearly determined, nor is the
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correlation between their candidates and the odor prop- is a coefficient and 6 is a scale factor [6].
erties (17]. For the sake of simplicity we assume that
one constituent molecule possesses one of these crucial Such logarithmic scaling makes the relative phases of
parameters and corresponds to one of the odor compo- spatial patterns invariant to different concentrations of
nents. So, the odors are presented by the concentration the same odor. The changing of the concentration of
vector C - {cI, c2, ..c,}, where cj is the concentration a multi-component odor results in a phase shift of the
of j-th molecule. whole pattern, while the relative phase-shifts remain

constant.
In the olfactory systems odors are first perceived by
hundreds (say n) of receptor neurons of the olfactory In our model we define an odor as a cluster of odor
epithelium. These neurons are sensitive to different patterns, that have identical components with different
kinds of molecules and respond selectively to their pres- relative concentrations. The system has to be rough
ence with oscillatory firing. An odor is further encoded enough to be able to recognize that different patterns
into a periodical temporal sequence of spatial patterns may belong to the same cluster. On the other hand, it
of synchronized oscillatory neural activity of the olfac- has to be sensitive enough to distinguish slightly differ-
tory bulb/antennal lobe [71, [10], [13]. The spatial pat- ent odors within a cluster.
terns are proved to be correlated with the odor com-
ponents [9],[101,[12], but the functional significance of In our network, recognition of an odor is represented
their temporal structure is unclear. Different experi- by the firing of the neurons of a specific ensemble in a

mental data supports two major hypothesis of its pos- specific sequence. Cluster recognition and fine recog-
sible role. Such experiments as [101, [13] suggest that nition are represented by activation of different neural
the temporal structure of firing of different ensembles sub-ensembles.

contributes to encoding of odor identity in a certain
combinatorial way. Other data shows that precise tim-
ing of a spike, or the phase of the periodic firing, de- 3 The Model
pends on the stimulus intensity, that is the concentra-
tion of the corresponding component [3l,[6J. These two Our network consists of a layer of leaky integrate-and-
hypothesis could coexist and compliment one another fire neurons u3 , interconnected via arrays of interme-
or be the parts of a more complicated neural code. diate delay-neurons dA (Figure 1). The neurons u3

Our model realizes a mapping of the temporal relations are also connected with the layer of temporal inputs
of input patterns into spatio-temporal dynamic of the s,(t). These inputs simulate activity of the olfactoryof iputpatern ino satiotemora dyami ofthe bulb and the neural layer functionally corresponds to

output activity. Although we follow the Hopfield's idea the olfactory cortex that receives and processes those

[6 and assume that the timing of a pattern's firing patterns.

encodes the concentration of an odor, our system could
still be employed if the temporal structure carried some The periodic inputs s,(t), {j - 1, ..n} represent n spa-
other functional significance. tial patterns which correspond to n components of odor

concentration vector C - {cl, c2, ..c,,). The inputs are
The spatio-temporal patterns in the olfactory bulb are presented as follows:
believed to be formed in the following way: the greater
the concentration of the odor component applied, the
earlier the correspondent ensemble synchronizes its ac-

00tivity and fires [7]. According to the Hopfield's hy- WU
pothesis [6], the corresponding concentrations cj of n k-1(t)--s 6(t.+ ' - kT) (2)
constituent molecules are encoded as absolute phases
0',02..,0,, of ensemble's oscillation, related to ref-
erence phase of the cortical oscillation O(r) . The re- where 5(t) is Dirac delta function, T is the signal's
spective phase shifts are then equal: o, - 4 - 0(r). oscillation period, s is a spike's amplitude and the
The functional relation between stimulus intensity and phase shifts W1 encode concentrations of constituent
phase advance of the spikes has been proposed by Hop- molecules according to equation (1). An example of
field: input pattern is shown in Figure 1.

p = a ln(c,/6) (1) There are three types of neurons in the layer. Each of

where each phase shift is assumed to be proportional them is characterized by its state, that is the neuron's
to the logarithm of the corresponding concentration, a membrane potential: uj(t) for the principal neurons,
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d1' (t) for the delay neurons, and 4' (t) for the selective The operator L used above maps the functions of a neu-
neurons. The neurons and inputs are connected with ron membrane potential to the function of the spikes
weights w(n r), w(det) and w (

'uP) (Figure 1) 1(t) which this neuron produces. So, for example,
Lfuj(t)] = 13(t) where l,(t) is equal to s(t -tth ,h)

As described below in equation (3), a neuron uj re- and t is the time when the value of membrane

ceives corresponding input signal sj(t) from the j-th potential u reaches its threshold.
input and lateral signals W~'(t) (which are defined later
in the section) from the activated neuron u,, which are The parameters of the equation are set in such a way
propagated and delayed by the delay-neurons di'. that in order for a neuron u3 to fire it needs to re-

ceive two spikes in the narrow time-window At(u). One
s.0 spike s,(t), from the corresponding input neuron and

another, 1(t) = L[d',(t)], from one of the delay-neurons
sNt) WI-1 U(see details in section 5). An exception is made for the

t tvery first input spike in the first cycle, which alone is
s . d (dd) able to activate the corresponding neuron. This excep-

tion is made in order to add to the model the func-
.tional property of the networks like LEGION, where

-p, the global inhibition of the neurons depends on the
number of the activated neurons [2]. Such inhibi-

SOW W( =W) X tion ensures that the fewer neurons are activated, the

w.- greater is the probability for a neuron to fire. In our
SAOt) w model the neurons are made more sensitive to the very

t first input spike, because there is no activation yet in
the neuron layer. So, this first spike is enough for them

Figure 1: Network architecture. The neurons of acti- to fire.
vated sub-ensemble {ui, dJ, u,} are shown in
bold. Arrows and black circles represent, cor- Delay-neurons in the arrays are integrate-and-fire neu-
respondingly, excitatory and inhibitory connec- rons with added inherent propagation delays Dk, {k =
tions. 1..m} defined as:

When a neuron receives a spike, its potential uj(t) is
increased by the weighted value w(neur)s,(t), if it is a
spike from input level, or w(neur)ji (t)=w(ne )L[d(t)] dd(t) W(dL!L = -kdJ,4(t) -t ~e)Lfui(t - Dk)]
(operator L will be defined later in the section), if it is a dt
spike propagated though a delay-neuron d. If the po- +
tential of a neuron reaches its threshold value Uthreh, +E w($uP)L[X-k( (5)
the neuron fires. Its output signal L,(t) = L[u,(t)] pro- 9:q~k
duces a spike which is propagated to the array of delay-
neurons that transfer the spike to all other neurons in The parameters of the equation make the delay-neuron
the layer. At the same time its potential uj is instantly work as a delay-operator (details in section 5). When
reset to 0 as shown in (4). Additionally, the poten- d-' receives a spike at time t it fires at t + Dk. The
tial uj is constantly decreasing with decay coefficient values of delays Dk change gradually across the array
k. These mechanisms are employed by all the neurons as follows:
in the model.

Dk=T(k - 1/2)

duj(t) = -ku 3 (t) + W("-r)sj(t)}+ (6)
dt

+ E _ Zw(ntur)L[d1i(t)] (3) where T is the oscillation period (2), and m is the num-
i:io# k=1 ber of the delay-neurons in the array.

As an example we consider a simple case, where an
odor with two components {0, .. , c, cj, ..0} is applied

ut-) = Uthresh = i(t+) = 0 (4) with cl > cj. For convenience we will be presenting
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it further as {cl, cj}. When this odor is applied, the mediate delay-neuron dk' indicates the relative con-
neuron ur receives the input spike sl(t) first, at the centration of two components, logarithm of which lays
moment tj and then uj receives sj(t) at t2 . in the vicinity of the delay DK of the corresponding

delay-neuron:
The single spike st is enough for ul to fire because of
the exception mentioned above. The neuron u! fires at

the moment t, and sends spikes Ljuj(t)] to all other T rc,1 T
neurons uj , {j = 1..n,j # I} via delay-arrays d' i. DK - In <aI ] < DK + - (9)
The neurons u2 receive the delayed signals from dj' at

times t + Dk, {k = 1, .m}. However, it is not enough
for them to fire because a spike from input level is also The corresponding spatio-temporal dynamic is shown

needed. Although all of them show subthreshold acti- at the Figure 2b, left column. The parameters used in

vation, only the neuron uj which will receive the input the simulation are described in Section 5.

spike sa will actually reach the threshold and fire. Fi-
nally the neurons that fire are ul, uj and all interme-
diate neurons d J in the array which connects them. 4 Temporal Segmentation

The values of DA set by (6) ensure that one and only According to the mechanism of formation of the input
one of the delay-neurons fires and sends a spike" to the temporal sequence [7], if a mixture of several odors is
neuron uj within the time window At(z). Although applied, the corresponding spatio-temporal sequences
all of the delay-neurons in the array fired, only one are superimposed and the resulting input sequence con-
of them actually contributes to the firing of the neu- tains patterns of all components of each odor. The
ron uj. To distinguish this contributing delay-neuron stronger the component, the earlier its pattern fires,
from others an additional layer of neurons x' is added no matter which odor the component belongs to.
(Figure 1). These neurons provide negative feedback

E w(sf"P)L[x(t)j to the intermediate neurons that Z A

did not contribute to the firing of uj (5). This is done
with integrate-and-fire neurons which work as coinci- ii
dent time neurons with the allowed time window At. El E. E- E'

Their parameters and functional properties are analo- M' Md- 7d? Fd_' V .-

t- 5 + kT t- 6+{'k.N)T
gous to the neurons ul. d Q

d4'(t) = -kxi(t) + W(neur)L[d(j3) + E E- FD1

+ W(neur)L~uj(t)] (7) F41M lI%7S5+kT t&LkprT

So, d J / which contributed to the firing of uj stays un-
changed, while the rest of the intermediate neurons are
suppressed and will not be sensitive to the spikes from
ui during time of suppression Ts, which is defined as =-S.kT = 19 .(ktr

follows:
(a) (b)

1 W(SUp) Figure 2: Temporal pattern segmentation. (a) Distribu-

Ys= In ,dlh(eh/S- W(d el )  (8) tion of the neurons in the layer; (b) Spatio-
k -temporal neural dynamics during first p/ (left

column) and second p! (right column) cycles.
Axis z corresponds to the membrane potentials

Now at the output level there is a sequence of firing of u(t) or d(t), {k = 1, ..pf}, T is the period of os-
neurons ul, d k' and ul one after another. Firing of the cillations
neurons ul and uj indicates that an odor of the cluster
{cl, cj I is recognized. The firing of the specific inter- In order to segregate the odor patterns in time, one
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of the ensembles should win and suppress the others with 100% probability. So, the ensemble which con-
for a period of several cycles. After that, due to the tains the winning neuron, or, in other words, the odor
neural fatigue, the winning ensemble stops firing and with the strongest component always wins the compe-
the second strongest ensemble wins and fires during tition first.
the next several cycles [21,[51,[7],111]. To realize such
pattern segmentation the modified network from the As an example we consider the case where two odors
section 2 with additional neural interaction and neural {cl, ci) and {cp, cQ} are applied to the network with
fatigue function F(p) is used: the following order of the concentrations of their com-

ponents: cl > cp > cj > cQ. The temporal sequence
of input spikes is the same:{sj(t), sp(t), sj(t), sQ(t))

du (t) The first of them sl (t) activates neuron ul, which sends
du ~- - ku+(t) + + inhibitory signals to up and uq, and excitatory signal

n I to uj via array of the delay-neurons. When input spike

+ E E w(nft r)L[d4(t)] + sp(t) appears, the corresponding output neuron up is
i:ioj k=l suppressed and will not respond to the impulse. Then

input sj activates neuron uj, which already received
wnter)Lfui(t)]}F(p) (10) excitatory signal from ul. After that sQ(t) fails to ac-

i:VXUU~jqE. tivate neuron uQ. Finally the neurons ul and uj fire,
while up and uQ remain silent. This way the odor
(ul, uj} is segmented from the background and atten-

where a neuron ensemble Ez, {z = 1, ..Z) is a group tion is focused on it for the period of p1 cycles. Then,
of neurons that correspond to the components of the due to the neural fatigue F[p, the neurons ul and uj
same odor. All neurons which are not members of stop firing and up and uq become activated, so the
the same ensemble are interconnected with negative attention is now refocused at this odor. So, the odor

weights w('jte. When a neuron ui fires, it sends in- patterns are temporally segregated and processed one

hibitory signals u inter)Lfu(t) to the neurons that do at a time, as is shown at Figure 2.
not belong to any of the ensembles E, in which the neu-
ron ui participates. The values of the membrane poten-
tial of those neurons are decreased by r)Lu(t). 5 Simulation
They stay suppressed for the refractory period TR dur-
ing which they cannot fire regardless of the input sig-
nals received. TR is determined as follows: The neurons described by (3) and (7) work as coin-

cident time detectors. They fire if two spikes arrive
to a neuron within time window At, the size of which

1(inter)S is defined by the parameters of the integrate-and-fire

TR In(Uthresh - 2w(neur)s) (11) neurons as follows:

At(U) = In ?uthresh 1)

F(p) is a step function with F(p) = 1, if p < pf and k ln s )
F(p) = 0, if p > pf. The variable p is the number At(X) = -I -- e -1r(1

of times the neuron's potential reached its threshold, In W(ner)s 1) (12)

and pf is the number of firings after which the neuron
becomes insensitive to the inputs and stays silent foranother P1 cycles, where At(u). and At(z) are the time windows of neurons

u* and x'k' respectively. In our simulation UIAt h =

The dynamics of the competition between ensembles is Xthresh, so At(u) = At ( ' ) , thus we will represent them

a quite complicated process [21, [7), because for a neu- both as At.

ron in ensemble, probability to be suppressed depends
on the statistical value of the difference of received in- As well as this is essentially the property of the neu-

hibitory and excitatory spikes. rons used in the model, there was no need to implement
them by the actual integrate-and-fire neurons. The

In our model, according to equation (10) and the excep- neurons uj were replaced by logic units u;, character-
tion for the first spike in the input sequence (Section 3), ized by its state u. (t) that has the following properties:
the first activated neuron suppresses the others, which Without inputs u* (t) is equal to 0. If ut receives two

are not in its ensemble and does not allow them to fire spikes with weights w ("'u') at the moments tj and t2
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with t 2 > tl, Then: Acknowledgment: This work was sponsored in part by the De-
partment of the Navy, Office of Naval Research, Grant NOOOIF It2 - tlI <At 14-01-1-0630. The content of this information does not neces-

THEN u*(t+ ) =U thresh sarily reflect the position of the government.

ELSE u*(t) = 0
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PROCESSING TEMPORAL SEQUENCES

Andrzej G. Lozowski and Bradley L. Noble

Southern Illinois University at Edwardsville, ECE Department
Edwardsville, IL 62026

ABSTRACT j
The analysis of dynamical systems with nonintegrable con- +T
tinuous-time dynamics is oftentimes performed with the help G _ C if 0
of a Poincare map. This reduces the number of observed di- T
mensions by one without a significant loss of generality in
the results. Dynamics produced by the Poincare map, how- Figure 1: The LC tank circuit with negative conductance
ever, is still a sequence of real-valued quantities, difficult to G and amplitude regulating current if(i). The current-
represent in terms of electronic signals. Alternatively, a bi- controlled current source is a Schmitt trigger circuit.
nary signal representing the time intervals between consec-
utive piercings through the Poincare section can be easily
implemented in electronic circuitry. 2. SIMPLE TEMPORAL SEQUENCE GENERATOR

1. INTRODUCTION The circuit includes a simple harmonic (linear) oscillatorwith a tank circuit and a negative conductance, as shown

We introduce a temporal sequence to be a signal composed in Fig. 1. The negative conductance G supplies energy to

of Dirac deltas separated by a sequence of time intervals, cover for the dissipation from the actual LC components.

The choice of the Dirac delta representation has no mean- In order to insure bounded oscillations, an amplitude stabi-

ing other than marking certain instances in time. More for- lization technique is used by injecting current i/ (i). Current

mally speaking, a temporal sequence is a mapping Z -+ R i switches between one of two constant levels Io or -10.
(integer-to-real), which resembles the set-theoretical defini- Every such switching decreases the magnitude of oscilla-

tion of a sequence. tions. The dynamic equations of the oscillator represent a
Temporal sequences form a metric space. This allows second order system

for testing how close two temporal sequences are to each dv
other. By defining a suitable metric, convergence of a dy- C-=-Gv-i+i(i) (1)
namical system Z -+ (Z -+ R) can be tested. The meaning dt

of the introduced dynamical system description is a tempo- di = v (2)
ral sequence undergoing iterations. This formalism is suffi- dt

cient to investigate Cauchy convergence as well as synchro- Whenever the injected current is constant if= -10, the so-
nization of two temporal sequences. Modifying the statis- lution (v(t), i(t)) is linear about the fixed point (0, ±1o), as
tics of a temporal sequence as it is being generated can be shown in Fig. 2. The frequency of oscillations and the enve-
considered a form of modulation. Information inscribed in lope of magnitude expansion are determined by the eigen-
the sequence in this mannerwould be detectable if the statis- values of the Jacobian [7C -I 1. These eigenvalues
tics of the unmodulated time sequence were known when I - - -1

recivdare the complex conjugate pair A G ± i I. There-received. e 7

The main advantage of having the signal in the form of fore the frequency of the oscillations is fo = 2 and

a temporal sequence is its suitability for binary representa- the magnitude follows the envelope e- 0bt.
tion. A simple electronic circuit (alternative designs have The fixed point is a center of the oscillations spiraling
been introduced [ I ]) for hardware experiments with tempo- outward. Current if selects the present location of the fixed
ral sequences is presented in subsequent sections. point as either positive or negative constant 1o. The switch-

This work was sponsored by the Department of Navy, Office of Naval ing occurs when the trajectory gains enough magnitude to

Research, Grant N00014-01-1-0630. The contents ofthis information does reach the vicinity of the opposite fixed point location. Since
not necessarily reflect the position of the U.S. government, only a single variable i is used to determine the switching
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a.

-

-2

b.

Figure 2: There is only a single fixed point in the phase 0.95
space, however its location is switched between 4Io. The 0.9

Poincare section i = -I'sign(v) is shown in bold.

if 0.5

'o  -2 - 1 2

0.7

Y.65

_ __ __ Figure 4: Graphs of functions f (top) and g (bottom). Note
Ix that axes of the graph in the bottom do not intersect in the

origin.

The set of points in the phase space, corresponding to
the change of state of the Schmitt trigger, is located on the
bold discontinuous curve shown in Fig. 2. This curve, de-

Figure 3: A Schmitt trigger injects current if = to scribed by equation i = -Isign(v), is selected to be the

switch the fixed point location whenever inductor current i Poincare section of the oscillator dynamics. Note that only

reaches value ±I. variable v is a meaningfiul coordinate of the events hap-
pening on the curve. The Poincare section determines a
discrete-time dynamical system. It will be useful to express

threshold, the circuit can be implemented using a simple its equations using the following state description:
Schmitt trigger. If the present fixedpoint isIo and the trajec-
tory coordinate goes below the opposite fixed point -1 o, the V.+ = f(v.) (4)
fixed point is switched. Likewise, if the present fixed point T. = g(vn) (5)
is -10 and the current coordinate exceeds positive I0, the
fixed point is also switched. A constant 1. has been selected Sequence {v, represents the coordinates of consecutive
to adjust the threshold point for the fixed point switching. intersections of the oscillator trajectory with the Poincare
The described switching occurs at an instance to as follows: section. Sequence {Tn} represents time intervals between

these intersections. Figure 4 shows graphs of finctions f
-I0, if i(t) 1. (3) and g resulting from the oscillator dynamics example with

) Io, if i(t ) = -1 o/1 = 1.05 and parameters GLC selected to obtain eigen-

values A = 2w(0.05 ± 1.00i). With the help of these func-
where t' = limho(t ± h). The hysteretic relationship tions and equations (4) and (5), the dynamics on the Poincare
between the currents if and i, shown in Fig. 3, is a source of section can be easily calculated without having to integrate
nonliearity of the circuit and provide its ability to oscillate the differential equations of the oscillator.
chaotically. Sequences of vn and T, are not easy to obtain from the
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Figure 6: Mapping T,+, = h(T,,). Final intervals T,,,

Figure 5: Graph of 50000 intervals between the Schmitt are shown vertically versus preceding final intervals T,,
trigger transitions. Intervals -rk+t are shown (vertically) in (horizontally). Counting from the left, dt+l is the number

terms of preceding intervals rk (horizontally). of the graph branch. Dashed lines separate variable ranges
occupied by the branches.

electronic implementation of the oscillator. Another observ-
able, readily available through measurement, is the state of Moreover, the graph of this relationship is composed of sev-

the Schmitt trigger. Let {Tk } be the sequence of time inter- eral branches. For a given T,, the successive final interval
vals between consecutive transitions of the Schmitt trigger. is located on the dk+ -st branch of the graph. This way, fi-
As illustrated in Fig. 2, eveiy interval r- is composed of sev- nal interval Tn uniquely determines also the interval Tk+ i.

eral full rotations of the trajectory about the fixed point and The evolution of final intervals resembles iterations of the

one final rotation taking less then 75% of period to hit the Bernoulli shifts. A mapping h and quantization scheme q
bold line on the opposite side. With the selection of exam- can be developed by interpolating the graph in Fig. 6:
pie oscillator parameters, the period is To = 1, which can h(T.) (7)
be identified as the maximum value of finction g in Fig. 4b.
All intervals T, less then period To determine the final ro- dk+1 = q(Tn.) (8)
tation before the Schmitt trigger transitions. The ordered
set {n : T, < TO} defines a sequence {nk} of indexes of With the help of these two functions the mapping of r-
such final intervals T.. Prior to the nk-th final interval T", intervals can be explicitly devised as

there are dk = n, - n%_- - 1 full rotations To. This pro- = ---,, mod To)To + h(m mod To). (9)
vides a relationship between time interval sequences {Tk}+
and {T}: = dkTo + T 6) Given an initial interval, Equation (9) allows for generating

Tk =( the r-sequence same as the one produced by the original

A question naturally arises as to whether sequence {-r} differential equation. However if certain limited precision
could be generated directly by a mapping. Even more specif- level is assumed, mapping h will introduce uncertainty in
ically, is interval -k.+1 uniquely determined by the preced- the dynamics. There are infinitely many branches contained
ing interval rt? A number of interval pairs (Tr, Tk+i), gen- in the graph of mapping h. At higher argument values, cor-
erated using Equation (6), is displayed in Fig. 5. The grid responding to the right side of the graph in Fig. 6, even a
pattern is an immediate consequence of the i--interval be- slight fluctuation of argument, resulting from physical re-
ing composed of a multiple of T0 plus a final interval T,. ality of implementation, will result in indeterminable value
In fact, the final intervals barry all the information regard- of the mapping. Such behavior is typical for nonintegrable
ing the i--sequence. As shown in Fig. 6, final interval T, dynamics. In order to avoid relying on individual trajec-
uniquely determines the successive final interval T,,+,. tories of the dynamics being inspected, using its statistical
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characterization may prove beneficial in practical applica-
tions. Let D C (0,To) be both the domain and the range 0.25

of mapping h. Let hi be the i-th branch of mapping h, and
unambiguously h = U I hi. Domain D is divided into in- 0.2

finitely many segments Di. Each segment Di is a preimage
of the domain for a certain branch Di = hi1 (D). Seg- 0.15
ments D! through D12, separated by the dashed lines in the
range of mapping h, are shown in Fig. 6. A fraction of 0.1

segment Di which is mapped onto segment Dj is a subseg-
ment hi (Dj). Assume the initial interval T o is selected
randomly from domain D. If the dynamics determined by
Equation (9) is ergodic, conditional probability Pij that the 2 4 6 8 10 12

successive interval Ta, falls into segment Di given that in-
terval T., is in segment Di equals the ratio of the segment Figure 7: Invariant probability distribution , for the dy-
lengths: namical system derived from time intervals r. Probabili-

ties of the first 12 states (Pr(dk = 1) through Pr(d = 12))
Pi = 1D ) (10) shown.

Numbers Pil arranged in a matrix P = [Pj] describe prob-
abilities of transitions from segment Di to Dj at every it- 3. REFERENCES

erative step. The first six rows and columns of matrix P [1] H. Nakano and T Saito, "Synchronization in a pulse-evaluated numerically read[1]HNaaoadTSat,"ycrnaininaple
coupled network of chaotic spiking oscillators," in

0 0 0 0 0.528 0.471 Proc. of the 45th Midwest Symposium on Circuits and

0.121 0.346 0.237 0.137 0.091 0.065 .. Systems (MWSCAS'02), vol. 1, (Tulsa, Oklahoma),
0.114 0.360 0.226 0.146 0.096 0.056 ... Aug. 4-7,2002.

P = 0.133 0.357 0.232 0.136 0.084 0.056 ... [2] M. Tabor, Chaos and integrability in nonlinear dynam-
0.093 0.338 0.259 0.148 0.094 0.065 ... ics. An introduction. John Wiley & Sons, 1989.
0.121 0.365 0.218 0.135 0.095 0.063
... ... .. ... ... ... . [3] G. Mazzini, R. Rovatti, and G. Setti, "Chaos-based DS-

(11) CDMA:Introduction. Some tools for studying chaos
Note that P is the transition matrix of a Markov process with densities:' Winter School in Chaotic Communica-
with states dk associated with segments Di. Matrix P is tions, University of California in San Diego, Jan. 23-
probabilistic, which means that the row-sums are always 26,2000.
equal to 1. If 4 is any initial probability distribution 0b(u) =
Pr(do = u), after k iterative steps the distribution evolves
to be Op,. The iterations eventually approach the invariant
probability distribution b* = lim-.,o O6Pk . If mapping h
is mixing [2] and expanding (Ih'(Tj)j > 1), the invariant
distribution 0, is uniquely determined by the parameters of
the dynamical system [3], independent of the initial distri-
bution 0. The dynamical system (9) generates observable
time intervals Tk with symbols d occurring according to
the distribution 0" shown in Fig. 7. This distribution is also
the left eigenvector of matrix P associated with eigenvalue
equal 1.

In conclusion, the first-order statistics of the time inter-
vals generated by a dynamical system with oscillatory dy-
namics can be derived from its binary observable. The se-
quence of time intervals which displays a grid pattern in de-
layed coordinates contains a sequence of discrete symbols.
Such a symbol sequence may be considered Markovian and
the frequency of inter-symbol transitions can be estimated
in order to determine transition probabilities.
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Abstract - Quadratic logistic map (QLM) is pro-
posed as a generalized form of an artificial neuron 3000

(AN). Dynamics of the QLM not only exhibits com-
putational abilities, but also has certain common fea-
tures with the one of the modified Hodgkin-Huxley
models of a neuron. The rest state of the QLM neu-
ron is wandering within a chaotic attractor. Applied 2000

input is an additional bifurcation parameter of the E
system. Input of a certain range induces emergence of I-.

corresponding stable orbit. An arbitrary large num-
ber of attractors can be stored in a single QLM neu- 1000
ron. We explore the computational abilities of the
QLM dynamics and argue that it may reflect certain
aspects of dynamics of biological neurons.

I. INTRODUCTION 065 s5 10. 125

Limitations of the static nature of artificial neural net- T (C)

works (ANN) have inspired investigation in neuron mod-

els with inherent dynamics, such as spiking and chaotic Fig. I. Bifurcation diagram of the modified Hodgkin-Huxley

neurons. In networks made of such neurons recognition model of thermally sensitive neurons. Interspike intervals

is presented by convergence not only to a fixed point, i-, versus bifurcation parameter 2' (temperature). (From

but also to a limit cycle or even chaotic attractor [5]. Al- U.Feudel et al., Chaos,Vol. 10:1, 2000.)

though this is a step toward modeling of the real brain

processes, when these dynamic attractors are used in the

framework of static NN, they simply replace static fixed namics emerges in neural systems at macro level as well.

points with the dynamic ones. As a result, they do not Seminal results of W.Freeman and co-workers [II] show

bring principally new computational properties. that the state of the olfactory bulb, in olfactory system,

Most artificial neurons commonly used for simulations when unperturbed, is wandering within high-dimensional

are oversimplified versions of the Hodgkin-Huxley model chaotic attractor. This chaotic wandering is seen as a

(HHM), which, in turn, is a simplified model of the real solution search. pplied input (odor) shifts the state of

neural processes. the system to the one of its low-dimensional wings, which

However, HHM, as well as its modified versions corresponds to the recognized odor.

(MHHM), demonstrate quite fascinating dynamics, with This concept of chaotic search was further explored by

a variety of chaotic phenomena. For example, dynamics [I], [8], and even applied to an engineering application: a

of interspike time interval of biological thermally sen search of an optimal solution of the salesman problem

tive neurons with increasing input (temperature) which [A2].

is a bifurcation parameter of a system, undergoes transi- Alnother idea is that if chaotic wandering were con-

tion to chaos via period-doubling cascade, intermittency trolled, the patterns could be stored as trajectories of the

and crises of chaotic attractors, emerging windows of pe- system's state in the phase space. That would give an

riodic activity, etc., as shown in Fig. I. [3]. Chaotic dy- enormous memory capacity and preserve some relations

0-7803-7278-6102/$10.00 02002 IEEE

Lysetskiy M, Zurada, JM., Lozowski, A., Bifurcation-based Neural Computation, Proc. of the

International Joint Conference on Neural Networks, pp. 2716-2720, Honolulu, Hawaii, May 12-17,

2002



(like similarity, for example) of stored patterns. However only be hierarchical but dynamical and flexible as well.
tempting, the concept has not been yet realized. Chaotic attractors undergoing structural transformations

Sensitivity to small fluctuations and initial conditions (as, for example, merging and segregation), caused by
is is another application of chaos possibly employed by changing of bifurcation parameter, could be the mecha-
the brain circuits to separate, for example, a tiny input nism used by the brain for this purpose.
from a strong background. In this paper we use the dynamics of quadratic logis-

How exactly chaos is employed by the brain and how tic maps (See Fig. 2 and Eqn. (I)) [61,[10] as an ab-
the computation principles of biological neural circuits stract model of a chaotic neuron with great computa-
are different from the ones of ANN is not well under- tional power. At a first glance the QEM is very far from
stood. However, one of the hints about this difference is both ANN and their biological prototypes, but, surpris-
the fact that in biological systems an input may not be ingly, it turns out that QEM may actually be one of the
presented by initial conditions. Instead, an input can be the missing links between them.
its bifurcation parameter. It is exactly the case in the A single classical neuron with a feedback and sigmoidal
HHM and MHHM, where external current is a bifurca- activation function x' + ' = f[x] can be seen as a logis-
tion parameter of the dynamics of the neuron's poten- tic map with three fixed points and their corresponding
tial. Dynamics of thermally sensitive neurons, where the basins of attraction (Fig. 3). Sigmoidal form of the ac-
temperature is a bifurcation parameter for a interspike tivation function used in ANN not only produces triv-
interval dynamics [2],[3],[4] is a good illustration of this ial dynamics with limited computational abilities, it also
idea. This input-as-a-parameter hypothesis could explain does not reflect subtle and sophisticated computational
how microscopic fluctuation of an input is able to change processes of a real biological neuron.
global dynamics of a system, which is often the case for
biological sensory circuits. Subthreshold oscillations may
be the biological mechanism to push the neuron close to
the bifurcation state, and make it sensitive to the changes Xk+ Stable fixed

of bifurcation parameter (input) [7]. Unstable

0.4

-101 Xk I

Fig. 3. A neuron with a sigmoidal activation function as a
2.25 2.5 2.75 3 3.25 3.5 3.75 4 logistic map.

Fig. 2. Bifurcation diagram of quadratic logistic map x t + = Although transformation function of QEM,
Rxt(I - xt). x' values (vertical axis) versus bifurcation

parameter R (horizontal axis). (From R.A.Holmgren,
Springer-Verlag, New York, 1996.) xt+I = Rxt(I -xt) (I)

Another hint about brain's possible computational is even simpler, its dynamics is tremendously rich, and
principles comes from the necessity of a flexible dynam- thus. very promising from a computational point of view.
ical structure of attractors which represent features and With bifurcation parameter R increasing starting from a
objects. ANN philosophy basically is: one pattern - one low value (see Fig. 2), the number of stable fixed points
attractor. However, the brain have to deal online with is constantly doubling till the system falls to chaotic at-
multiple objects which are composite, constantly chang- tractors. In their turn, chaotic attractors undergo further
ing in time and with vaguely defined features. In order transformations, such as merging and segregation with
to handle this task the structure of attractors must not

0-7803-7278-6/02/$10.00 02002



other chaotic attractors, collapses which produce stable
periodic solutions, etc.

Bifurcation diagrams of QLM and MHHM of ther-
mal neurons are shown in Figs. I. and 2. The reason 0.
of their amazing resemblance are saddle-node, period-
doubling and other common basic bifurcations which un-
derlie these dynamics. Period-doubling cascade route to 0.6

chaos present in both of them is one of the fundamen-
tal bifurcation scenarios which is behind a huge number
of dynamic processes - from a population dynamics in
ecological systems, to chemical reactions, like the one of
Belousov-Zhabotinsky [7],[9]. So, it is not an accident 0.2

that dynamics of logistic maps may qualitatively reflect
certain dynamical processes of biological neurons.

The question now is: what all this variety of bifur- 3.7 3.75 3.8 3.85 3.9 3.95 4
cation processes could give us in terms of computation?This is what we focus on in this paper. Fig. 4. Bifurcation diagram of QLM. Emerging of period-3

orbit. (From R.A.Holmgren, Springer-Verlag, New York,

II. DYNAMICS 1996.)

When bifurcation parameter R is small (R < 3), the
system x + ' = f[x'] has a single stable fixed point (Fig. and unstable if:
2). Period-doubling bifurcation occurs when R = 3.
With R increasing further, system undergoes period- df 3 [x(4)
doubling cascade and at the critical point Rc ; 3.57 it dx
becomes chaotic. The dynamics of the system is quite
complicated and is still a subject of research. We fo- With R < R 3 map f 3 [x] has no stable solution and thus
cus on one of the numerous bifurcation phenomena: At wanders within chaotic attractor (Figs 2 and 4). When
certain values of R, for example at R 3 z 3.828, chaotic R = R 3 the curve x' + 1 = f3[xt] touches the line x1+1 -
attractor the system lives on collapses, producing stable xt simultaneously in three points A, B and C, defined by
period-3 orbit (Figs. 2 and 4). This happens due to three (5):
saddle-node bifurcations, giving birth to 3 stable and 3
unstable orbits out of chaos. This period-3 orbit also un- df 3 [xI (5)
dergoes a cascade of period-double bifurcations and the dx

system falls to chaotic attractors again. Due to the frac-
tal structure of the bifurcation diagram such windows of which prd itesetions. Ti gie th o3sn-stable and 3 stable solutions. We name them correspond-
periodic orbits are ubiquitous and can be found at any in-
terval of the bifurcation parameter. Period-3 orbit of the ingly B2, B, C and a 2 . B 2 , (see Fig. ). Solutionsmap fixt] corresponds to a period-I orbit (fixed point) 42 , B 2 , C 2 are stable while they satisfy Eqn. (2). As
oa f he ] ma p o to a fff ]]ied oit ixd ote R further increases they loose their stability via period-system x - f3[xt] is defined graphically as a point of doubling bifurcation. In order to make this phenomenasytesecton =fcurves de- f 3 [x t ] and x - xl (Fig. compute, we will explore another bifurcation scenario.3). x* is stable if: Let R = Rb be slightly less than bifurcation value R 3 ,

3). ter i n sais fxestablend hesytif:ve
when there is no stable fixed points and the system lives

df [ I ( s son the chaotic attractor. Now we add input w hnp (w
dx < 1 (2) stands for the connection weight) to the system, whichshifts the function vertically in the following way:

it is neutral if: x - 3[x I - wlnp (6)

d3 [x] - (3) Now, if we increase gradually Ynp starting from Inp = 0,
dx the curve x1+ 1 = f 3 [xt ] - wlnp will not touch the

z t + 1 = x t line at 3 points simultaneously as in the pre-
vious case, but at 3 distinct input values (Figs 5 and 6).

0-7803-7278-6/02/$10.00 02002 IEEE
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Fig. 5. (a) Function f 3 [x] = f[f[x]]] of QEM, R = 3.808. Fig. 6. Function f 3 [x] = f[f[f[xt]]] of QLM, R = 3.75.
(b) Emergence and disappearance of stable orbits via the
sequence of saddle-node bifurcations. Black and empty
circles correspond, respectively, to stable and unstable It is worthwhile to note that the shape of the function
fixed points. f 3 [x] has not been specially designed for this kind of com-

putation, so only 3 saddle-node bifurcation points can be
explored with specific R = R. It is easy to construct a

This happens so because the distances function of specific shape with numerous saddle-node bi-

A = f[A] - A furcation points which would make the number of input

= f [B] - B intervals stored practically unlimited with their sizes ar-

AC = f[C] - C bitrary chosen.

III. SIMULATION
are different and unique for different points (A,B and C) Simulation of the QLM dynamics was performed with
for all R < R 3 , as shown in Fig. 6. These differences are
due to the different speed of the vertical changes d parameter Rb = 3.808. The reason behind this choice

dR is that the widest period-3 orbit (Fig. 4) emerges withwhich depends on how fa the point is from the origin.
When the shift whnp = ZSA the curve x +

i = f 3 [Xt] - bifurcation parameter R 3 = 3.828. R6 = 3.808 is slightly

wnp touches the line x 1  xt , so a neutral fixed point less than R 3 , so the system is chaotic, but its stable states

A appears via saddle-node bifurcation which splits then can be produced by a small input. The saddle-node bi-furcation points, where the curve x1+ 1 = f3[Xt] - wlnp
into unstable fixed point A, and stable A 2 (Fig. 5b). The tucheo the r the cre = (3 ) a ws:
chaotic attractor collapses and the state of the system t t 01 1  = 0 i a dn b ) fl
converges to the stable point A 2, as is shown in Fig. 7 a = 0.161, B = 0.515, C = 0.955.
(hnp = 1.5). Stable fixed points A2, B2 and C2 loose their stabil-

As Inp keeps increasing two processes occur. Fixed ity via double-period bifurcations when they reach the
point A 2 looses its stability due to (4). Also, when the following values: by= 0.150, B= 0.484,C =0.959,
shift whnp = AB, another stable point B 2 emerges via defin by (4).sadle-odebifrcaionby hesame mechanism (Fig. Input intervals that produce emergence of attractors
saddle-node bifurcation by the saemcaim(i.A, B and C with w = I are defined, respectively as5b). At some moment the state of the system jumps follinsv
from A 2 that is looses its stability to B 2 that becomes follows:
stable (Fig. 5b). The same bifurcation mechanism un- A: 2A = 0.015 < wlnp < A b = 0.026
derlies appearance of a stable fixed point C 2 when Inp is

negative and the system is shifted upward. B: AB = 0.039 < whip < AB b = 0.070
3 different input intervals have been mapped onto 3 C: AC = -0.004 > wnp > AC b = -0.007

different attractors. By exploring windows with different (8)
periods, any desirable number of intervals can be stored
to a single neuron. Simulation results are shown at Fig. 7.
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structure of a tlermoreceptor", Physical Review E, Vol. 62:5,
pp 6352-6360, 2000.

X 7] U.2eudel, A.Neiman, X.Pei, W. Woftenek, H.Braun,
M.Huber, and F.Moss, '"Homoclinic bifurcation in a
Hodgkin-Huzley model of thermally sensitive neurons',

0.6 Chaos, Vol. 10:], pp 231-239, 2000.

"4] R. Gilmore, X.Pei and F.Moss, "Topological Analysis of chaos
0.5 in neural spike train burst" ,Chaos, Vol. 9:3, pp 812-817,

1999.

L "[5] M.Hirsch and B.Baird, "Computing with Dynamic Attractors
0.4 din Neural Networks", Biosystems, Vol. 34, pp 173-195, 1995.

" "6] R.A.Holmgren, A First Course in Discrete Dynamical Sys-
tems, Springer- Verlag, New York, 1996.

0.2, I'/ F. C.Hoppensteadt, E.M.lziiikevich, Weekly Connected Neural

Networks, Springer- Verlag, New York, 1997.

I F I I 8"] O.Hoshino, N. Usuba, Y.Kashimori and T.Kambara, "Role
-2 0 2 4 6 Iof Itinerancy Among Attractors as Dynamical Map in Dis--Ip tributed Coding Scheme", Neural Networks, Vol. 10:8, pp

1375-2390, 1997.

Fig. 7. Dynamics of the map xt+ 1 = f 3 [Xt] - winp (with -9] K.Kaneko and 1.Tsuda, Complex Systems: Chaos and Be-

R = 3.808) versus applied input. Three input intervals yond, Springer- Verlag, Berlin Heidelberg New York, 2000.

are mapped onto three attractors /10] G.Ott, Chaos in Dynamical Systems, Cambridge University
Press, New York, 1993.

"11] C.Skarda, and M.Preeman, 'How brains make chaos in order
IV. DISCUSSION to make sense of the world", Behaviorai and Brain Sciences,

Vol. 10:161-195, 1987.
We have shown that quadratic logistic map can be con- 1] 7. Tokuda, T.Nagashima and K.Aihara, "Global Bifurcation

sidered as a more general neural model with great corn- Structure of Chaotic Neural Networks and its Application to

putational abilities. QLM demonstrate dynamics which, Traveling Salesman problems", Neural Networks, Vol. 10:9,

at certain level, has certain common features with the pp 673-7690, 7997.

one of biological neurons.
Bifurcation transition that we used (emerging of

period-3 window out of chaotic attractor), is only one of
numerous phenomena of QLM dynamics. Other chaotic
processes of QEM could provide us with more compu-
tational abilities and possibly with some cues to under-
stand certain aspects of dynamics of biological neurons.
Such process as, for example, transformations of chaotic
attractors of QEM may reflect dynamic transformations
of the global state of the biological neural system during
the recognition process. Appearance and then merger of
several chaotic attractors to a single big chaotic attractor
may correspond to a recognition of parts of a composite
object, their binding, and then recognition of the object
as a whole. Thus we argue that dynamics of quadratic
logistic maps could be a useful tool for exploring compu-
tational abilities of artificial and biological neurons.
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The content of this information does not necessarily reflect the
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Abstract

According to experimental studies, interspike intervals (ISI) are responsible for odor information

encoding occurring in the olfactory bulb. In this paper a method is described for generating ISI that

hypothetically mimics the temporal encoding of odor information. The ISI is generated by the dynamical
system derived from a Markov process synthesized to incorporate the ISI as its invariant distribution.

The ISI distribution is the principal eigenvector of the transition matrix of Markov process. An algorithm
using Nelder - Mead to synthesize the transition matrix through a cost function minimization is presented.

1 INTRODUCTION

A sense on smell (or Olfaction) allows vertebrates and other organisms with olfactory receptors to identify

the odorant molecules. A particular group of receptors is excited by a specific group of odorants (Dickson

et al. 1998). The sensory olfactory receptors response to the odorants is then passed to the olfactory bulb

for detection. The function of the olfactory bulb is to relay the input obtained from the olfactory receptors

into a set of easily interpretable signals to the brain. The characteristics of the signals is assumed to be the

following (Lozowski et al. 2004):

1. The spikes mark instances of time when the neurons fire and their shape is not a significant factor.

2. The average value of the signal is affected by spikes since signal is a time sequence of spikes and also

they fluctuate between occurring more or less frequently.

3. The code division of information conveyed by a single signal is possible because the interspike intervals

may follow a distinct and a repetitive behavior, in simple words spikes may occur in a certain temporal

pattern.

4. Synchronization between the signal sources may cause two or more signals to exhibit cross-correlation.If

the synchronized signals assume a certain spatial distribution, a set of such signals will manifest a

spatio-temporal pattern.

According to a recently proposed principle of pattern processing with ISI distribution which hypothetically

mimics the olfactory system encoding (Lozowski et al. 2004), the feature of odor molecules could be encoded

1



with ISI distribution produced by a dynamical system. The dynamic system is derived from a Markov
process synthesized to incorporate the ISI distribution which is the principal eigenvector of Markov process.

This paper discusses the means of encoding odor information in the olfactory bulb and suggests an imple-
mentation for encoding by using a biological neural circuit of spiking integrate-and-fire neurons. This paper
also discusses an algorithm using Nelder - Mead to synthesize the transition matrix through a cost function

minimization.

2 SIGNAL ENCODING IN OLFACTORY BULB
Olfactory receptors located in the olfactory epithelium region are hard-wired to detect a specific odor com-
ponent. On one end of the receptor there is a dendrite which receives signals from odorants, on the other end
is an axon, which projects to the olfactory bulb. Thus olfactory epithelium the input stage to the olfactory

system.
The olfactory receptors also called sensory neurons produce spikes, whose frequency (f) of spiking depends

on the concentration of the odorants at olfactory epithelium. The larger the intensity of the odorants at
olfactory epithelium the more frequent the sensory neurons spike (White et al. 1991). The concentration
information is temporally modulated at the glomerular inputs of the olfactory bulb, therefore the perception
of odor intensity must be related to the interspike intervals (- = 1/f) (Lozowski et al. 2004). If the odor
intensity increases, the intervals of spiking decreases at a different rate for each basic odorant due to the
differences in their conversion gains.

A much more compressed way to describe odors is through distributions of interspike interval probabilities,

which is more relevant to the signals presented to the mitral inputs. Let the interspike intervals be quantized
into N ranges with cutoff rmax. Maximum time difference between evoked and spontaneous activity of the
receptors is 'ma. A single neural signal can represent an odor with the interspike interval r probability
distribution a=(al, a 2 ...... aN),which is formally a vector of probabilities by Lozowski et al.(2004):

NPr(- <r -rmx) if n < N
a,= ((1)

tPr(rmTa < r) if n = N

The transformation of the odor into spikes is a dynamical process. The odor information is embedded in
the time realizations of signals and can be retrieved only through observation of these signals for a period
of time. Statistical analysis of the neural signals retrieves the probability distribution of the interspike
intervals. A simple stochastic process can be modeled to have the statistical properties representing a given
odor through the probability distribution.

Let a* according to Lozowski et a.(2004) represent the probability distribution of odor at a steady state,
i.e. after all transient response has vanished. A first order approximation of a dynamical system for the odor
leads to Markov process with an invariant probability distribution of a*. Let A (N x N) be the transition
matrix of the Markov process (Lozowski et al. 2002)

a(k + 1) = Aa(k) (2)

The invariant distribution is the eigenvector of transition matrix A associated with the unit eigenvalue:
a* = Aa*, thus we call the invariant distribution as the principal eigenvector of the Markov process.

The realization of the introduced Markov process is a sequence of interspike intervals rk. The interval
range is defined to be T, = [ N r....; Tma.) if n < N, and T = , o) otherwise, where the interval

range index n is defined in the same manner as in Rospars et al. (2001). Operator A may be developed by
using optimization to have a* as its invariant distribution of interspike intervals over a period of time. The

2



elements of the operator are denoted by A1j, so that A = [Aij], where i and j are the row column indices.

Number Aij is the probability that in the Markov process (Lozowski and Noble 2002) an interval from the

range Ti will follow the interval from the range rj (Lozowski et al. 2004):

A ij - Pr(,rk+l E Ti and rk E Tj) (3)
Pr(-rk E Tj)

For a given a* starting with some random Aij's, Nelder-Mead Simplex method of optimization can be

used to find the Aij's corresponding to a minimum cost function value. As all Aij's are probabilities, they

must be real numbers in the range (0,1). Based on this we define a components of cost function Eq. (4)

namely quadratic error Eq. (5) and penalty function Eq. (6).

F(A) = Fq(A) + F.(A) (4)

Operator A is a probabilistic matrix whose column vectors are normalized probability distributions.
Therefore, the columns of A sum up to 1. The cost function component Fq(A) calculates the error of

deviation for this condition (Lozowski et al. 2004):

N
Fq (A) = (1 - EAij(5

j=1 =

The penalty function component of the cost function Fp(A) calculates the sum of individual element

penalties, which defines the error due to a particular element swaying out of range 0 to 1. This can be

represented by the Eq. (6).

N N[ -Aj if Aij< 0

F,(A) = E (Aj - 1) if Aij > 1 (6)
i=1 j=1 0 otherwise

Operator A is a well defined transition matrix of Markov process Eq. (2) if F(A)=O. The goal of opti-

mization procedure is to develop operator A with the constraint that a* is its principal eigenvector associated

with eigenvalue 1. To simplify the operator synthesis, matrix A will be assumed to be diagonalizable : A

= BAB -1 . The diagonal matrix A = diag(A) is composed of N eigenvalues A=(A1 ,A2 .... ,AN) of A. Let
A1 = 1. The convergence of the dynamical system Eq. (2) depends on the radius of the remaining Ai's, for

i > 1, assuming that IAil< r < 1 and the radius is kept low to improve the convergence rate. In this paper

the value of r was fixed to be equal to 0.2. Operator A is diagonal in the basis constructed with the column

vectors of B. Since Al=1, the first column vector of B is a*. All other entries Bij, j > 1, are the variables

in the optimization process. Their initial values are selected randomly from the uniform distribution in the

range (-1;1). The optimization process is explained in the next section.

3 SIMPLEX METHOD FOR FUNCTION MINIMIZATION

The Nelder-Mead Simplex method for function minimization (Nelder and Mead 1965) of multiple variables

is a classical, very powerful local descent algorithm, which depends on the comparison of function values at

the vertices of a general simplex and not on the objective function derivatives. The comparison of function

values at vertices is followed by the replacement of the vertex with the highest value by a new point generated

in the process of optimization. The simplex adapts itself to the local landscape, and contracts on to the final

minimum.

3
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Figure 1: An example for transition matrix of a four stage Markov process generated by simulator using simplex minimiza-
tion method

As described in the previous section the first column of the matrix B is the principal eigenvector a*, the
remaining N(N - 1) variables in matrix B have to be adjusted to obtain optimum operator A. So, initially
considering minimization of a function of N(N - 1) variables, thus a simplex of N(N - 1) dimensions
needs N(N - 1) + 1 points which are formed by randomly selecting values (in the range (-1;1)) for the
variables in matrix B and corresponding transition matrices, cost functions (Y1xN(N-1)+1)) axe formed.
The N(N - 1) variables in each matrix are treated as vertices of the simplex, thus the vertices of simplex
are PO, Pi1 ..... , PN(N-1). The cost function at point P is denoted as Y, the highest value among the cost
functions is denoted as Yh (Yh=maxN(, -) Y), and the lowest value among the cost functions is denoted as.N(N- 1)y 

=

Y(YI =min=N Y). P is defined as the centroid of the points with Y 74 Yh and the distance from point
Pi to Pj is represented by [P2Pj].

The simplex goes through a sequence of geometric transformations (expansion-step 1, reflection-step 2,
contraction-step 6 and multi-contraction-step 7) at each stage of comparison by replacing the highest by a
new point. The optimization process is as follows (R. Chelouah et al. 2003):

1. Determine the Y, Yh,P and calculate P* = (1 + a)P - aPh calculate the cost function at P* as Y*.

2. If Y < Y" then form p** and go to step(3) else go to step(4) P** = (1 + y)P* - -yP, calculate the cost
function at P** as Y**.

3. If Y** < Y* then replace Ph by P** and go to step(5).

4. If Y* > Y for all Y except Yh go to step(6).

5. Replace Ph by P* and go to step(8).

6. If Y* < Yh replace Ph by P*. Form P*** = fPh + (1 -,3)P and calculate the cost function at P** as

y.
7. If Y > Yh then replace Pi by (P'+P') i =:N, else replace Ph by P**

2 r

8. Check if Y1 has reached satisfactory value or zero, if so the optimum value for the matrix B is P1 .

The transition matrix A shown in Fig. 1 is formed with the matrix B obtained from simplex method of
minimization. A simple shift-map can be constructed from the probabilistic operator by used in approxima-
tion Eq. (7), as described in detail Pingel et al. (2000).

1 1
f(x) x-j+ A,,J + N - i, ifj - YAij < x < j + Ai - Z Am, (7)

Sm= 1~l
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Figure 2: Example of a piece-wise linear shift map f (x) for the transition matrix shown in Fig. 1

60 4C2 4C 100 60 100 £0 W £0 £1 0 80 2
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Tins

Figure 3: An example of spike train with specific ISI distribution produced In response to the Input pattern
1-{0.41,0.28,0.41,0.31,0.34}

Figure 4: The pattern of normalized Input currents (a) and the resulting 151 distribution (b) of the spike train.
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Figure 5: IS[ distribution and spike train produced by the ISI simulator
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Figure 6: Transition matrix with principal elgenvector a*={ 0.1 17,0.3755,0.4047,0.1025} generator generated by

the simulator
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Figure 7: Shiftmap of the transitoin matrix shown In the Fig. 6

A piece-wise linear map as shown in the Fig. 2 f : [0; N] --+ [0; NJ, [0, N] C R is derived from probabilities

included in the operator P.

4 INTERSPIKE INTERVAL GENERATOR

An example of a spike train produced in response to the input pattern I = {0.41,0.28,0.41,0.31,0.34} is

shown in Fig. 3. The diagram of the normalized input pattern Inorm = {0.24; 0.16; 0.23; 0.18; 0.19} and the
resulting ISI distribution of 10 seconds spike train are shown in Fig. 4. Here p(ISI,) is the probability of

occurrence of the interspike intervals.

Simulator for the interspike interval generator and can be visited at

'http : //ci.uofl.edu/currentwork/narem/SIMULATOR/spikegen'. Fig. 5 shows the example of a spike
train produced in response to the input pattern I = {0.34, 0.55,0.27,0.44, 0.40} and the resulting ISI distri-
bution of 10 second spike train.

Simulator for transition matrix generator can be visited at
'http: //ci.uofl.edu/currentwork/narem/SIMULATOR/tranmatrix'. Transition matrix generated by
the simulator and the cost function for the transition matrix with principal eigenvector
a*={0.117,0.3755,0.4047,0.1025} is shown in the Fig. 6. The resulting shift map of the transition matrix is
shown in the Fig. 7.

5 CONCLUSIONS
This paper describes a simplest method of encoding information in temporal sequences and show input-
output interactions which lead to an odor detection and encoding mechanism. This paper also describes a
simulator which generates spike trains with the input controlled distributions of interspike intervals. This
paper also describes Simplex method for function minimization, a multi-variable function minimization tech-
nique.
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